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h i g h l i g h t s

� This paper presents an application of multivariate regression splines (MARS) to a model looking at the railroad track defect behavior.
� As part of this study, it was determined that there is a reduction in rail life of approximately 30%, when track geometry defects are present.
� This paper has important ramifications in railroad track geometry maintenance and its economic importance.
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a b s t r a c t

This paper presents an application of multivariate regression splines (MARS) to a model looking at the
railroad track defect behavior. MARS is a non-parametric function estimation technique that shows great
promise for fitting non-linear multivariate functions. The MARS approach was used here, together with
traditional regression analysis techniques, to develop equations to predict the life (in Millions of Gross
Tons or MGT) of a rail defect in the presence of track geometry defects. The MARS approach, using exten-
sive input data, identified and accounted for the key variables contributing to a reduction in rail life. The
MARS technique allows for easy interpretation of the relative importance of the different input parame-
ters, to include defect type, and resulted in the development of rail defect life predictive equations as a
function of these key parameters. As part of this study, it was determined that there is a reduction in rail
life of approximately 30%, when track geometry defects are present.

Published by Elsevier Ltd.

1. Introduction

A recent FRA1 sponsored study looked at the relationship
between the presence of one of more track geometry defects and
the development of rail defects at that same location, after the occur-
rence of the geometry defects. This is a relationship, that basic track
engineering theory has suggested, but which has never been proven
or validated. Theoretical research has shown that the presence of
geometry defects generates increases dynamic wheel/rail loads [1–
3], which in turn can result in earlier development of rail fatigue
defects and an associated reduction in fatigue rail life. That is
because the defects result in a dynamic effect on every wheel that
passes over the rail section, increasing the level of loading and the
associated level of stress experienced by the rail [4–7]. This includes

both bending stresses and contact stresses, both of which have an
effect on the development of rail defects [8–11]. There have
been some few papers on the application of curve fitting methods
in rail track engineering including Paixao et al. [12] and Kouroussis
et al. [13].

In order to examine this relationship, the study correlated mul-
tiple years of track geometry with a database of several years of rail
defects obtained from a major US Class 1 railroad. The railroad sys-
tem data represented more than 22,000 track miles (37,000 km),
and included:

� Three years of rail defect data, representing approximately
50,000 defect records, which was subsequently narrowed to
approximately 26,000 defects of ‘‘interest”.

� Five years of track geometry data representing approximately
335,000 defect records.

� Tonnage data (annual MGT).

This paper proposes the use of MARS as another tool in track
degradation. The MARS technique is a data-driven procedure. It
produces a model for the response that automatically selects the
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variable appearing in the final equation. It also indicates whether a
variable enters additively, or interacts with other variables. Finally,
it selects the complexity of the relationship between the response
and each variable. The main idea behind the MARS strategy is that
different areas of sample space or different variables may have a
greater or lesser contribution to the response surface. MARS can
incorporate categorical variables, logit regression, and missing
data.

2. MARS

Friedman [14] introduced the MARS approach as a method for
fitting the relationship between a set of predictors and a dependent
variable. MARS is fast and is based on a divide and conquer strat-
egy, partitioning the training data sets into separate regions, each
of which gets its own regression line. MARS is a data-driven proce-
dure, compared with the more frequently used model-driven pro-
cedures. The MARS model is a regression model using basic
functions as predictors in place of the original data. The basic prob-
lem facing railroad engineers in performance and deterioration
modelling is how best to determine the fundamental relationship
between the dependent variable (usually MGT), and a vector of
predictors. The question is how best to specify f in the following
equation:

MGT ¼ f ðG1;G2; . . . ;GnÞ ð1Þ
The MARS algorithm searches over all possible knot locations,

and across interactions among all variables. It does so through
the use of combinations of variables.

The general form of a MARS predictor is as follows [15]:

y ¼ b0 þ
XP

j¼1

XB

b¼1

bjbðþÞMaxð0; xj � HbjÞ þ bjbð�ÞMaxð0;Hbj � xjÞ
� �

ð2Þ
for P predictor variables and B basis function. The basis functions
Maxð0; x� HÞ and Maxð0;H � xÞ are univariate and do not have to
each be present if their b coefficients are 0. The H values are called
hinges or knots. An example of MARS model is:

y ¼ 28� 0:5Maxð0; x1 � 6Þ þ 2:5Maxð0;6� x1Þ þMaxð0; x2 � 7Þ
þMaxð0;2� x3Þ �Maxð0; x3 � 13Þ

Since Maxða; bÞ ¼ �Minð�a;�bÞ and aþMaxðb;cÞ¼Maxðaþb;aþcÞ,
a MARS predictive model is always expressible as a sum of Max
and Min operators on piecewise linear univariate expressions. The
MARS algorithm proceeds as follows: a forward stepwise search
for the basis function takes place with the constant basis function,
the only one present initially. At each step, the split that minimized
some ‘‘lack of fit” criterion from all the possible splits on each basis
function is chosen. This continues until the model reaches some
predetermined maximum number of basis functions, which should
be about twice the number of expected in the model to aid the sub-
sequent backward stepwise deletion of the basis function. The back-
ward stepwise function involves removing basis functions one at a
time until the ‘‘lack of fit” criterion is a minimum. In the backward
stepwise deletion, the least important basis functions are elimi-
nated one at a time. The lack of fit measure used is based on the
generalized cross-validation (GCV) [16]:

GCV ¼ A �
X
i

yif̂ ðxÞ
� �

=N ð4Þ

with A ¼ 1� CðMÞ=N½ ��2 and CðMÞ ¼ 1þ trace½BðB�BÞ�1B0� being the
complexity function [14]. M represents the maximum number of
linear basis functions (BFs). N is the number of observations. B
denotes the matrix of BFs with dimension M � N. The GCV criterion

is the average residual error multiplied by a penalty to adjust for the
variability associated with estimation of more parameters in the
model [17].

3. Analysis approach

Correlation and statistical analyses were performed together
with a series of analyses looking at the relationship between the
life of a rail defect (in cumulative MGT) and the presence of geom-
etry defect(s).

Table 1 presents a summary of the initial correlation between
rail defects and geometry defects for the full system (22,000 miles)
and for the high tonnage segments, defined here as having a min-
imum annual tonnage of 20 MGT. As can be seen from Table 1, for
the full system, 11% of all rail defects were preceded by one or
more track geometry defects. For track with greater than 20 MGT
annual tonnage, this percentage increases to almost 12%. Likewise
for the full system, 15% of all Traverse Detail Defect (TDD) rail
defects were preceded by one or more track geometry defects
and for track with greater than 20 MGT annual tonnage, this per-
centage increases to almost 17%.

In contrast, if the relationship between rail defects and geome-
try defects were purely random the probability of a match at a
given location was calculated to be 1.4% for all defects and 0.6%
for TTD. Thus the actual percentages of matches were of the order
of 7–20 times that which would occur purely by random chance.

Analysis of the matches between the rail defects and preceding
geometry defects, showed that a large percentage of these matches
had in fact multiple two or more geometry defects preceding the
rail defect, at the same location. These repeat matches were either
the same type of geometry defect occurring at a different time (cor-
responding to a different geometry car run) or were a different
type of geometry defect at the same location. These results, show
that for the full system, 38% of the matches had multiple geometry
defect matches (Repeats), while for TDD defects 41% of the
matches had multiple geometry defect matches (Repeats). The
higher density (>20 MGT) track showed a similar behavior.

On curves, the results were even more dramatic, with 21% of all
rail defects were preceded by one or more geometry defects and
approximately 10% of all rail defects were preceded by two or more
track geometry defects (Table 2). For TDD defects only, over 30% of
all rail defects were preceded by one or more geometry defects and
15% of all TDD rail defects were preceded by two or more track
geometry defects.

3.1. Rail defect by type vs. geometry defect by type

As part of this correlation analysis, the Class 1 railroad system
rail defect-geometry defect matches were correlated by specific
defect type (as defined previously). This is shown for the geometry
and rail defects in Table 3. Note, this is a consolidated matrix
where various defects with few occurrences are eliminated and
many of the geometry defect classes consolidated, particularly left
and right rail geometry defects such as cant and alignment. As seen
in Table 3, TDDs represent the largest class of matched defects with
51% of all rail defects. Other key rail defect types include Bolt Hole
Breaks (BHB) representing approximately 8%, Electric Flash Butt
Welds (EFBW) approximately 7%, Thermit Welds (TW) approxi-
mately 12%, Vertical Split Heads (VSH) around 5%, Head and Web
separation (HW) around 8% and Shelly Spots (SD) around 9%.
Table 4 presents a summary of the major matched track geometry
defect categories to include Cant (31.6% of all defects and 39.4% of
TDDs), Cross-level/Cross-Level Index Meter (CLIM) (18.0% of all
defects and 13.8% of TDDs), Warp (25.0% of all defects and 21.2%
of TDDs) and Gage/Track Strength (11.8% of all defects and 14.7%

A.M. Zarembski et al. / Construction and Building Materials 127 (2016) 546–555 547



Download English Version:

https://daneshyari.com/en/article/4913968

Download Persian Version:

https://daneshyari.com/article/4913968

Daneshyari.com

https://daneshyari.com/en/article/4913968
https://daneshyari.com/article/4913968
https://daneshyari.com

