Accepted Manuscript

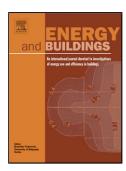
Title: Long-Term Predictive Maintenance: A Study of Optimal Cleaning of Biomass Boilers

Author: Karel Macek Petr Endel Nathalie Cauchi Alessandro

Abate

PII: S0378-7788(17)30041-5

DOI: http://dx.doi.org/doi:10.1016/j.enbuild.2017.05.055


Reference: ENB 7636

To appear in: *ENB*

Received date: 5-1-2017 Revised date: 17-5-2017 Accepted date: 21-5-2017

Please cite this article as: Karel Macek, Petr Endel, Nathalie Cauchi, Alessandro Abate, Long-Term Predictive Maintenance: A Study of Optimal Cleaning of Biomass Boilers, <![CDATA[Energy & Buildings]]> (2017), http://dx.doi.org/10.1016/j.enbuild.2017.05.055

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Long-Term Predictive Maintenance: A Study of Optimal Cleaning of Biomass Boilers

- Karel Macek^a, Petr Endel^a, Nathalie Cauchi^b, Alessandro Abate^b
- ^aHoneywell ACS Global Labs, Prague, Czech Republic.
- ^bDepartment of Computer Science, University of Oxford, United Kingdom.

6 Abstract

Combustion in a biomass-fired boiler causes build-up of soot, which reduces the heat transfer and decreases the efficiency of operation. In order to mitigate this natural occurrence, cleaning via soot blowing is an important maintenance action. The objective of this study is to develop long-term optimal maintenance strategies, which are model-based and specifically employ the dynamics of boiler efficiency and of anticipated heating demand, both of which are identified from empirical data. An approximate dynamic programming algorithm is set up, resulting in the optimal maintenance actions over time, so that the total operational costs of the biomass boiler plus the cleaning costs are minimised. A practical case study with real data is used to elucidate the benefits of the new approach.

- 7 Keywords: optimal maintenance, energy efficiency, biomass boilers,
- 8 dynamic programming

9 1. Introduction

Biomass boilers are one of the promising future avenues for heat generation [1], and have been recently deployed significantly in the United Kingdom, due to vigorous governmental subsidies [2]. However, they have arisen several concerns, ranging from hardware design [3] to dynamic control [4]. The main reason is that biomass boilers have longer response times than gas or coal boilers. Poor hardware design and installation, as well as inappropriate and overly reactive control, may result in frequent on/off switching that is very inefficient.

Another difficulty is what is known as fouling. On the surfaces of the heat exchangers, soot is accumulated during operation. It causes worse heat

Preprint submitted to Energy and Buildings

May 25, 2017

Download English Version:

https://daneshyari.com/en/article/4914107

Download Persian Version:

https://daneshyari.com/article/4914107

<u>Daneshyari.com</u>