

Contents lists available at ScienceDirect

The Journal of Supercritical Fluids

journal homepage: www.elsevier.com/locate/supflu

Measurement and modelling of tracer diffusivities of gallic acid in liquid ethanol and in supercritical CO_2 modified with ethanol

J. Leite, A.L. Magalhães, A.A. Valente, Carlos M. Silva*

Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal

G R A P H I C A L A B S T R A C T

ARTICLE INFO

Keywords: Chromatography peak broadening method Cosolvent Gallic acid Modelling Tracer diffusion coefficient Supercritical carbon dioxide

ABSTRACT

The tracer diffusion coefficients, D_{12} , of gallic acid in liquid ethanol and in supercritical carbon dioxide (SC-CO₂) modified with 16 mol.% ethanol were measured using the chromatographic peak broadening technique of Taylor-Aris. The diffusivity in ethanol ranged $0.485 \times 10^{-5} - 0.905 \times 10^{-5} \text{cm}^2 \text{s}^{-1}$ (303.15–333.15 K and 1–100 bar) and in SC-CO₂/ethanol $3.256 \times 10^{-5} - 4.978 \times 10^{-5} \text{cm}^2 \text{s}^{-1}$ (313.15–333.15 K and 150-250 bar). The dependencies of D_{12} upon temperature, pressure and Stokes–Einstein coordinates were examined in detail. With respect to modelling, lower deviations were achieved in both systems by: four 2-parameter correlations of Magalhães *et al.* (error 0.9–3.0%;); the 1-parameter TLSM_d model (5.8% and 2.9% of error); and the 2-parameter Dymmond-Hilbrand-Batchinski (DHB) expressions (5.7% and 1.6% of error). The Wilke-Chang correlation cannot be applicable, due to consistent overpredictions of 133.0% (gallic acid/ethanol) and 114.0% (gallic acid/SC-CO₂/ethanol).

1. Introduction

The diffusivity can be defined in terms of a system response to a concentration disturbance, and relates the flow of particles with the resulting concentration gradients [1,2]. It is a transport property of great interest not only to study the structure and thermophysical behaviour of fluids, to capture information at microscopic level with regard to the interactions between molecules, but also for practical engineering applications [1-6]. The design of equipment depends on the physical properties of fluids, since an appropriate knowledge of

equilibrium data together with viscosity, thermal conductivity and diffusion coefficients is required for modelling processes involving momentum, heat and mass transfer [2,7], such as separation units and chemical reactors, particularly in the case of multiphasic systems.

Gallic acid (3,4,5-trihydroxybenzoic acid) is a natural compound obtained from the hydrolysis of tannins [8], and possesses anti-inflammatory [9], antioxidant [10], antifungal [11]) and carcinogenic [8] properties. It has proven to be one of the components with the highest bioactivity, enabling the fight against amyloid fibrils (fibril protein), which result from the aggregation of misshapen proteins that

http://dx.doi.org/10.1016/j.supflu.2017.09.004 Received 4 August 2017; Received in revised form 1 September 2017; Accepted 2 September 2017 Available online 07 September 2017 0896-8446/ © 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Department of Chemistry, Associate Laboratory CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. *E-mail address:* carlos.manuel@ua.pt (C.M. Silva).

Nomenclature		ū	Average linear velocity
		$V_{\rm c}$	Critical molar volume
AARD	Average absolute relative deviation	$V_{ m D}$	Maximum packaging volume of the solvent in the DHB
$B_{\rm DHB}$	Parameter of the interaction solute-solvent in the DHB		model
	model	$V_{\rm m}$	Molar volume
BPR	Back pressure regulator	$V_{\rm TC, bp, 2}$	Molar volume of the solute at its normal boiling point
$C^{\mathrm{app}}\left(z,t\right)$	Calculated average concentration of solute		estimated by the method of Tyn and Calus
$C^{\exp}(t)$	Solute concentration at exit column	$W_{0.607}$	Peak half-width measured at 60.7% of total peak height
CO_2	Carbon dioxide	y _i	Molar composition of the component <i>i</i>
CPB	Chromatographic Peak Broadening method	z	Axial coordinate
D	Dispersion coefficient		
D_{12}	Tracer diffusion coefficient of solute 2 through solvent 1	Greek letters	
De	Dean number, $De = Re/\sqrt{\xi}$		
DHB	Dymond-Hildebrand-Batchinski	ε	Root mean square deviation (rms)
Η	Height of theoretical plate	λ	Wavelength
$k_{ m B}$	Boltzmann constant, $k_{\rm B} = 1.380658 \times 10^{-23} \text{J} \cdot \text{K}^{-1}$	μ_1	Solvent viscosity
$k_{12,d}$	Binary interaction diameter	ξ	Curvature ratio
L	Length of the column	$ ho_1$	Solvent density; solvent number density
т	Total mass of solute injected	σ_i	Molecular diameter of component <i>i</i>
Μ	Molecular weight	$\sigma_{{ m LJ},i}$	Lennard-Jones diameter of component i
M_{12}	Reduced molar mass	ϕ	Dimensionless solvent association factor in the Wilke-
$N_{\rm av}$	Avogadro's number, $N_{\rm av} = 6.022 \times 10^{23} {\rm mol}^{-1}$		Chang equation
NDP	Number of data points	ω	Acentric factor
NP	Number of parameters		
Р	Pressure	Subscript	S
$P_{\rm c}$	Critical pressure		
r	Radial coordinate	1	Solvent
R	Inner column radius	2	Solute
$R_{\rm c}$	Tube coil radius	12	Binary
Re	Reynolds number	bp	Property evaluated at normal boiling point
Rg	Universal gas constant, $R_{\rm g} = 8.3144 \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$	с	Critical property
Sc	Schmidt number	eff	Effective hard sphere diameter
S_{10}	Asymmetric factor (ratio between peak half-widths at 10%	i	Component <i>i</i>
	peak height)	LJ	Lennard-Jones
SC-CO ₂	Supercritical carbon dioxide	mix	Mixture
t _i	Time at 10% peak height in the fitting method		
Т	Absolute temperature	Superscripts	
$T_{\rm bp}$	Normal boiling temperature of the component <i>i</i>		
T_{c}	Critical temperature	*	Reduced quantity
TLSM	Tracer diffusion coefficient model of Liu, Silva and	calc	Calculated value
	Macedo	exp	Experimental value

deposit up in the tissues of the human body organs. Hence it plays an important role in treating diseases like Alzheimer and Parkinson [12].

Gallic acid is present in plants such as green tea and black tea [13], pomegranate peel [14], oak bark [15], and grape seed extracts [11]. This compound and its ester derivatives are important chemicals used in both pharmaceutical and food industries [14,16], from which one may cite the synthesis of *trimethoprim* (antibiotic used for infections) and propyl gallate, respectively [14].

In this work, tracer diffusion coefficients, D_{12} , of gallic acid in pure ethanol and in supercritical CO₂ (SC-CO₂) modified with ethanol were measured and modeled. The usage of ethanol as SC-CO₂ modifier is important under the context of biorefinery, taking into account that small amounts of a polar entrainer are frequently introduced to increment solubility and improve selectivity in separations [17]. However it is recognized the lack of diffusivity data in the case of multicomponent mixtures [18].

The diffusivities of the binary system gallic acid/ethanol were determined at 303.15, 313.15, 323.15 and 333.15K, and pressures of 1, 20, 40, 60, 80 and 100bar. In the case of the supercritical ternary system gallic acid/ CO_2 /ethanol, the measurements were carried out at 313.15, 323.15 and 333.15 K, and pressures of 150, 200 and 250 bar. In both cases the chromatographic peak broadening (CPB) method of

Taylor-Aris [19–21] was applied. A preliminary study of the most adequate detection wavelength was performed, and the influence of temperature, pressure, and viscosity on the obtained diffusion coefficients is also discussed.

The structure of the article is as follows: In Section 2, a brief theoretical background of the lab methodology and modelling approaches is presented; in Section 3, the chemicals, equipment and experimental procedure are described; Section 4 is devoted to discuss the experimental and calculated results, while the main conclusions are compiled in Section 5.

2. Theoretical background

2.1. Chromatographic peak broadening (CPB) method

The CPB method originally derived by Taylor and Aris [22–25] can be applied to measure diffusion coefficients (D_{12}) of solutes (component 2) at infinite dilution in pure or mixed solvents (component or pseudocomponent 1) [21,26–29]. When a pulse of a solute is injected into a laminar flow of solvent through a capillary tube of circular cross section, that pulse will broaden due to the combined action of axial convection and radial molecular diffusion. The approximate average Download English Version:

https://daneshyari.com/en/article/4914575

Download Persian Version:

https://daneshyari.com/article/4914575

Daneshyari.com