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The scale-up of batch grinding data is an attractive option for the modelling of industrial milling circuits.
However, little is known in terms of the expected uncertainty attached to the predictions. This paper attempts
to estimate this.
For simulation purposes, coarse and fine feeds were considered in the context of an open ball milling circuit and
for three predefined feed flow-rates. Realistic fluctuations were allocated to the 25 input parameters making up
the simulation model. The Monte Carlo approach was then used to simultaneously process the randomly gener-
ated input parameter values. Finally, average values and standard deviations on the 50% and 80% passing sizes of
the mill product were calculated in order to obtain estimates of prediction uncertainties.
Global errors on the predicted full-scalemill product size were found to be as high as 70%. However, with appro-
priate assumptions on the scale-up correction factors, they were reduced to approximately 40%. It was also dem-
onstrated thatwell planned batch tests and accurately determined batch data can further drop the error to as low
as 20%. Finally, the scale-up model was found to work well when finer feeds were considered for milling at high
flow-rates.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

This work is part of a sequel of papers that looked at the scale-up
procedure for batch grinding data by Austin et al. [1]. The attractive fea-
ture of this scale-up model is that key input parameters are measured
bymeans of batch grinding tests. No specific requirements are imposed
on the dimensions of the laboratory mill or on the testing conditions.
However, studies around the prediction accuracy associated with the
scale-up procedure have been lacking. That is why, in the first paper,
Mulenga [2] investigated the effects that variations induced on batch
grinding parameters have on the scaled-up mill product. In the second
paper, the effects of full-scale milling parameters were investigated
[3]. The common drawback of these two studies was that the effects of
input parameters were considered individually while keeping the
other parameters constant. This hardly ever happen in an industrial
setup; instead, fluctuations are present on several parameters at the
same time. And in a peculiar instance, Mulenga [3] noted that the den-
sity of slurry feed had no effect on the mill product.

In this final follow-up paper, an attempt to address the aforemen-
tioned shortcomings is made with a two-fold goal: the first is to obtain
a fair and realistic estimate of the global error to be expected when
Austin's scale-up model is used and the second is to find alternative
models that can capture better the effects of slurry concentration.

In order to meet the objectives set out, parameters relating to batch
and full-scalemillingwere assigned acceptable levels of variation. Then,
1000 values within predefined ranges were generated for each milling
parameter using a computer-based algorithm. The pseudo-random
number values were simultaneously inputted into Austin's scale-up
model applied to a ball mill operated in open circuit. After that, the av-
erage values and standarddeviations recordedon the 50% and 80% pass-
ing sizes of the 1000 mill product were calculated. These were used to
get an estimate of the global relative error on the mean inherent to
the scale-up model. Finally, Austin's model was categorised in line
with the level of uncertainty applicable to engineering projects.

It should be noted that the developmental cycle of engineering pro-
jects goes through three stages with their respective level of accuracy: a
conceptual or scoping stage, a prefeasibility stage, and a feasibility stage.
In thiswork, the intentionwas to seewhether Austin'smodel incurs less
than the±25%maximum deviation required of engineering projects at
a pre-feasibility stage [4].

2. Austin's scale-up model for batch grinding data

An overview of the scale-up procedure proposed by Austin et al. [1]
is done in this section.

Austin's scale-up procedure starts with the preparation of mono-
sized feed samples. These undergo a series of grinding tests in a labora-
tory mill run in batch mode following a technique known as one-size-
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fraction method [1]. The selection function and breakage function pa-
rameters characteristic of the material are measured as a result of this.
These parameters can now be used in the scale-up model to predict
the performance of any full-scale mill processing the same material.

The scaled-up the selection function is calculated as follows [1]:
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with aT, μT, α, and Λ being the laboratory-based selection function pa-
rameters whereas N0, N1, N2, N3, N4, and c are the scale-up correction
factors.

The breakage function, on the other hand, is expressed as follows
[2]:
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where β, γ, δ, andΦ0 are collectively termed breakage function param-
eters. The term x0 represents the standard particle size which has the
value x0 = 1 mm.

The following full-scale milling conditions are needed in
Eqs. (1)–(7): mill diameter D, ball diameter d, slurry filling U, and mill
speed ϕc. Similarly, DT, dT, UT, and ϕcT represent the batch grinding con-
ditions used for laboratory testing.

3. Model of ball mill in open circuit

This section briefly describes the mathematical model of a full-scale
ball mill operated in an open circuit configuration. The classical model
formed the basis of the simulator built in this work and used to meet
the objectives set out.

Given a cumulative feed size distribution that follows the Rosin-
Rammler distribution function [5]:

Ψi ¼ Ψ xið Þ ¼ 1− exp −
xi
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In Eq. (8),Ψi=Ψ(xi) is themass fraction of feed passing size xi; x63.2
is the size at which the Rosin-Rammler distribution function Ψ(xi) has
the value 0.632 while λ is the characteristic slope of the feed size distri-
bution Ψ(xi) when plotted on a Rosin-Rammler coordinate system.

When considering the full-scale mill, the mass fraction distribution
of the feed corresponding to the cumulative distribution in Eq. (8) is
given by: fi=Ψ(xi−1)−Ψ(xi). This feed size distribution, now termed

fj, is related to the mass fraction distribution of the product, pi,
discharged by the full-scale mill operated in open circuit as follows [3]:

pi ¼ wi tð Þ ¼
Xi
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The term di ,j(t) is a transformationmatrix describing the breakage of
the feed fraction of size xj into the size class xi of the discharged product.
It is defined by the set of equations below:
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The average selection function Si in Eqs. (11) and (12) is given by:
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withmk being themass fraction of balls of diameter dk present inside the
mill at steady state as a result of regular top-up of fresh balls of diameter
dmax; dmin is theminimum diameter of ball that is found inside themill;
Δ is a parameter dictating thewear ratemodel applied to grinding balls.

From the laboratory-based breakage function in Eq. (7) applied to a
normalisable ore [1], it can be shown that the average breakage function
bi ,j in Eq. (11) is given by:

bi; j ¼ Bi; j−Biþ1; j ð15Þ

The next factor to consider in themodel of the openmilling circuit is
the material transport. This is described by assuming that the full-scale
mill consists of three perfectly mixed reactors in series: a large one of
average residence time τ2 and two small ones of similar volume and av-
erage residence time τ1 [1,5]. The termϕ(t) in Eq. (11) then be shown to
reduces to
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