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Derivation, validity testing and usage in practice of the powder compaction Eq. P= P0.exp(−K.pn) is presented. P
is the porosity at pressure p, P0 the porosity at p=0, parametersK and n represent the synergistically acting com-
paction parameters. The relationship between K and n, ln(K)=1.2952–7.3349.n or K=3.6517.exp(−7.3349.n),
was found on the basis of cold die-compaction testing of 205 various metal powder mixes. This analysis enables
calculation of additional criteria characterizing the compressibility of various metal powders. To facilitate the
analysis, a graphical processing of the relationship between the relative porosity P/P0 of the compact, p and n is
also presented. In practice, its use could provide a rapid assessment of the compressibility behaviour of various
metal powders.
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1. Introduction

Each type ofmetal powder represents a statistical set of autonomous
particles with a characteristic shape, size distribution, and microstruc-
ture. All of these determine the mechanical properties of the powder
mix, such as the specific surface, the apparent and tap densities, the
flow rate, but above all, the deformation behaviour of a metal powder
in a shaping process. Powder metallurgy (PM) uses a lot of different
shaping techniques, ranging from cold die-compaction to pressureless
processes, such as loose sintering and slip casting [1]. Die-compaction,
where densification and shaping occur simultaneously, is one of the
most important steps in the mass production of PM structural parts.

The terms “compactibility” and “compressibility” are used to classify
various powders according to their compaction ability. Compactibility is
defined as theminimumpressure needed to produce the required green
strength of the compact, whilst compressibility indicates the extent to
which the density of the compact is increased by a given pressure. Con-
sequently, compressibility is quantified by the value of the compacting
pressure required to achieve thedesired green density. In practice, pow-
der compressibility is an important factor in the design of the pressing
tool, which will ensure a defined shape and adequate strength of the
green compact [2]. Therefore, the study of powder compaction process-
es has been of great interest since the start of industrial production of
PM parts, and this persists to the present.

Many publications, from the thirties of last century until now, e.g.
[2–41], have provided extensive knowledge about the behaviour of
metal powder during compaction, taking into account various aspects.
A number of attempts to describe compaction processes, such as simple
fitting experimental pressure-density curves with their mathematical
expression, but also physical models quantifying the deformation be-
haviour of individual particles or solid body with spherical pores,
when exposed to external pressure, have been published from themid-
dle of last century, e.g. [8,12–14,16,17,20,21,24,25].

Current modern approaches are based mostly on computer
modelling. Gethin [34] presented an overview the use ofmodelling soft-
wares, and as reported by Federzoni et al. [35] the Cam-Clay and
Drucker-Prager-Cap models are the most frequently used. Martin et al.
[36] and Riera et al. [37] have used a Discrete Element Method for the
study of powder densification; Helle et al. [38] have processed a
micromechanical model, assuming initial random packing of spherical
particles, Fleck et al. [39,40] published an analytical model of plastic
and viscoplastic compaction of powders, Cocks [41] demonstrated a
model based on the theory of plasticity. Secondi [31] proposed a
model applying the relationship between the applied stress and the
strain acting in a pressed compact. Modelling approaches are of great
importance for the theoretical understanding of powder behaviour
under the influence of external pressure, however, they are mostly
highly complicated and often use simplified assumptions and their di-
rect use in practice is rather difficult.

As the properties of sintered parts depend strongly on green density
determined by powder behaviour during compaction,which is reflected
in the pressure-density relationship, the majority of fundamental
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studies have focused on interpretation and analytical expression of the
experimental dependence of density or porosity on compacting pres-
sure. Such an approach was prompted by the practical need to find an
adequate and generally valid compaction equation enabling characteri-
zation of the compressibility of different powder mixes. The starting
point was a general impression that the compressibility curves of vari-
ous real metal powders have a similar “course”, as is the fast onset of
densification rate at the beginning of compaction and its continual de-
crease with increasing pressure.

This led to a commonly accepted view, e.g. [6,12,13,15,16,19–25],
that the change from powder to compact, when exposed to pressure
during cold die-compaction, is the result of overlaying several mecha-
nisms. These, namely the particles rearrangement (by rotations and
translations), elastic and plastic deformations developed through the
particle contacts, and in addition to that associatedwith the strain hard-
ening of themetal matrix, are related to a certain value range of applied
pressure. Numerous compaction equations have been reported, e.g. [3,4,
5,7,9,10–13,17,18,27–33], most of which were obtained by simple
fitting of experimental pressure-density relationships for metal pow-
ders, ceramics, pharmaceuticals, chemical compounds, mostly with a
good correlation. Some of these, particularly those designed for metal
powders, are listed in Table 1. Many other compaction equations, espe-
cially for pharmaceutical powders, have been reported and their over-
view has been presented e.g. by Çomoglu [42].

Walker, probably as the first in 1923 [3], and later Balshin in 1938
and 1949 [5,10] have derived Eqs. (1), (2), (4) expressing that the rate
of change of a relative volume of pressed compact with an increase of
pressure is proportional to the applied compacting pressure. In Balshin's
Eq. (4) the constant a4 signifies the “pressingmodulus” and corresponds
to Young'smodulus. Shapiro andKolthoff [7] in 1947 and independently
Konopicky in 1948 [9] proposed the Eq. (3), later known as “KSK
equation”, or “KSK compaction model”, where the constant a3 is func-
tionally linked with the ability of particle material to deform plastically.
Thus the constant a3 can be quantified through the yield strength σy of
the particlematerial, as stated by Torre [8], Bockstiegel [16] and Secondi
[31]. The KSK Eq. (3) can give the correct expression of powder behav-
iour for p = 0 and p→∞. Admittedly, the KSK expression became a
starting point in a number of other compaction equations (such as e.g.
those in Table 1), however, using various mathematical processing of

the pressure-porosity or density relationships. Kawakita and Tsutsumi
[17] reported that the change of porosity P related to the pressure p
could generally be expressed by two equation types, Eqs. (15) and
(16), where x, y, z are constants:

−
dP
dp

¼ k:Px ð15Þ

−
dP
dp

¼ k:
P−1ð Þy
pz

ð16Þ

Themajority of compaction equations in Table 1 are two-parametric,
with almost identically defined physical nature of the parameters aj and
bj (for j = 1–14). The parameters aj are related to the densification by
plastic deformation, while the parameters bj reflect the compaction be-
haviour at low pressures and are mainly related to the geometry of
particles.

The predominantly two-parametric type of the existing compaction
equations indicates that the densification is a continuous process con-
trolled by the superposition of deformation mechanisms associated
with continuous changes occurring in geometry and plasticity of metal
particles at increasing compacting pressure. This physical principle of
densification behaviour during cold die-compaction is the same for var-
iousmetal powders, however,withdifferent efficiencies of actingmech-
anisms, which is the result of a specific combination of geometry and
plasticity of particles and this is different for different powders. Al-
though the authors [3–5,7,9–13,17,18,22,27,29–31], mostly interpreted
the physical background of the constants aj and bj, most often for a
defined set of powders, and underlined an importance their synergetic
action during compaction, the functional relationship between this
pair of parameters has not yet been found.

To obtain a generally valid compaction equation, it is necessary to
define the relationship between the parameters associated with simul-
taneously operating densification mechanisms, and with their different
participationmeasures, depending on the instantaneous combination of
geometry and plasticity of compacted powder particles. When the di-
versity of the combinations of geometry and plasticity of particles in dif-
ferent powders is considered, the functional relationship between the
synergistically acting pair of parameters can be obtained by analysing

Table 1
The most frequently applied compaction equations for metal powders; P = f(p).

Author, [ref.] Compaction equation No.

Walker (1923) [3] logðpÞ ¼ −Lþ V
0

V0
þ a1 ¼ −a1: 1D þ b1; P ¼ a1

logðpÞ−b1
þ 1

V'- volume of compact, V0- volume of powder, L- compression modulus

(1)

Balshin (1938) [5] logðpÞ ¼ −a2: 1D þ b2; P ¼ a2
logðpÞ−b2

þ 1 (2)

Shapiro, Kolthoff (1947) [7] Konopicky, (1948) [9] P=P0 .exp(−a3 .p); − dP
dp ¼ k1:P (3)

Balshin (1949) [10] lnðpÞ ¼ a4
ð1−PÞ þ b4; P ¼ 1− a4

b4− ln ðpÞ; −
dP
dp ¼ k2:P (4)

Athy (1949) [4] P=P0 .exp(−b .x); P=P0 .exp(−a5 .p); − dP
dp ¼ k3:P;(proposed for clays);

P0-average porosity of surface clays, P-porosity in depth x; b-constant

(5)

Kawakita (1956) [17] C ¼ a6 :b6 :p
1þb6 :p

; C ¼ V0−V
V0

; − dP
dp ¼ k4:P

2

C-relative reduction of volume by compression; V0-initial apparent volume

(6)

Jones (1960) [11]
ln(ρ)=m . ln(p)+b; P ¼ 1−

�
a7

b7− ln ðpÞ
�1=2

; − dP
dp ¼ k5:ð1−PÞ2:p−1

ρ-bulk densiity; m, b- constants

(7)

Heckel (1961) [12,13] lnð1PÞ ¼ a8:pþ lnð 1
P0
Þ þ b8; P0-corresponds to rel. Density D0 at p = 0 (8)

Kawakita, Lüdde (1970) [18] 1−P
P0−P ¼ p−1: 1

a9 :b9
þ b9; P0-initial porosity; P-corresponds to tap density (9)

Shapiro (1993) [27] P ¼ P0: expð−a10:p−b10:
ffiffiffi
p

p Þ; P0-porosity at zero external pressure (10)
Parilak, et al. (1994) [28,32] P=P0 .exp(−b11 .pa11); ln ½ lnðP0

P Þ� ¼ lnðb11Þ þ a11: lnðpÞ;
with ln(b11)=k6−k7 .a11;

(11)

Ge (1995) [26] log½ lnð1PÞ� ¼ a12:logðpÞ þ b12 (12)

Panelli, Ambrozio Filho (1998) [29,30] lnðP0
P Þ ¼ a13:

ffiffiffi
p

p
; dPdp ¼ k8 P

pm; m=0.5 (13)

Secondi (2002) [31] lnð D∞−D
D∞−D0

Þ ¼ a14:σn1 ; lnðP−P∞
P0−PÞ ¼ a14:pb14 ; σ-applied stress,

D0-initial relative density, D∞-maximum relative density to be reached by activated mechanisms,
D-relative density at applied stress, n1 –work hardening coefficient

(14)

Note: a1-a14, b1-b14, and k1-k8 are constants.
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