Accepted Manuscript

Immobilization of photocatalytically active ${\rm TiO}_2$ nanopowder by high shear granulation

Caroline Goedecke, Regine Sojref, Thi Yen Nguyen, Christian Piechotta

PII: S0032-5910(17)30484-9

DOI: doi:10.1016/j.powtec.2017.06.025

Reference: PTEC 12601

To appear in: Powder Technology

Received date: 25 January 2017 Revised date: 15 May 2017 Accepted date: 9 June 2017

Please cite this article as: Caroline Goedecke, Regine Sojref, Thi Yen Nguyen, Christian Piechotta, Immobilization of photocatalytically active TiO₂ nanopowder by high shear granulation, *Powder Technology* (2017), doi:10.1016/j.powtec.2017.06.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Immobilization of photocatalytically active TiO₂ nanopowder by high shear granulation

Caroline Goedecke^{1, 2*}, Regine Sojref¹, Thi Yen Nguyen¹, Christian Piechotta¹

¹ BAM Bundestanstalt für Materialforschung und -prüfung, Richard-Willstätter-Str. 11, 12489 Berlin, Germany

² Technical University Berlin, Fasanenstr. 1a, 10623 Berlin, Germany

* Corresponding author: Caroline Goedecke, e-mail: caroline.goedecke@bam.de

Abstract

Nano-TiO₂ powder is known to show high photocatalytic reactivity in the degradation of several organic pollutants. In this work, the powder was fixed on the surface of SiO₂ granules with the size of several micrometers using a high shear granulation process. Nanozirconia sol was applied as an inorganic binder. When the samples were tempered at 300 °C, they showed high stability in an aqueous solution for several hours. An energy dispersive x-ray spectroscopy (EDX) analysis confirmed that the cores and shells of the granules consisted solely of SiO₂ and TiO₂ respectively, and that ZrO₂ was found throughout the whole granules. Methylene blue (MB) was employed as a model system to evaluate the photocatalytic activity of the TiO₂ nanopowder and coated granules. It was shown that the TiO₂-coated granules lead to the degradation of MB under UV irradiation, whereas no effect was observed in the dark. After the degradation experiments the granules could be recovered and they remained active for further applications.

Download English Version:

https://daneshyari.com/en/article/4914945

Download Persian Version:

https://daneshyari.com/article/4914945

<u>Daneshyari.com</u>