Accepted Manuscript

Effects of amount of benzyl ether and reaction time on the shape and magnetic properties of Fe_3O_4 nanocrystals

Jinghai Yang, Qiangwei Kou, Yang Liu, Dandan Wang, Ziyang Lu, Lei Chen, Yuanyuan Zhang, Yaxin Wang, Yongjun Zhang, Donglai Han, Scott Xing

PII: S0032-5910(17)30501-6

DOI: doi:10.1016/j.powtec.2017.06.042

Reference: PTEC 12618

To appear in: Powder Technology

Received date: 12 November 2016 Revised date: 24 March 2017 Accepted date: 17 June 2017

Please cite this article as: Jinghai Yang, Qiangwei Kou, Yang Liu, Dandan Wang, Ziyang Lu, Lei Chen, Yuanyuan Zhang, Yaxin Wang, Yongjun Zhang, Donglai Han, Scott Xing, Effects of amount of benzyl ether and reaction time on the shape and magnetic properties of Fe₃O₄ nanocrystals, *Powder Technology* (2017), doi:10.1016/j.powtec.2017.06.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of amount of benzyl ether and reaction time on the shape and magnetic properties of Fe₃O₄ nanocrystals

Jinghai Yang^{a,b,*}, Qiangwei Kou^{a,b}, Yang Liu^{a,b,*}, Dandan Wang^c, Ziyang Lu^d, Lei Chen^{a,b}, Yuanyuan Zhang^{a,b}, Yaxin Wang^{a,b}, Yongjun Zhang^{a,b}, Donglai Han^e and Scott Xing^f

Abstract

Magnetite Fe₃O₄ nanoparticles (NPs) have attracted much interest due to their low toxicity, good biological compatibility and fast response to an external magnetic field. The magnetite Fe₃O₄NPs with different shapes and sizes were successfully prepared by the thermal decomposition method. The effects of the amount of solvent and the reaction time on the morphologies and the magnetic properties of magnetite Fe₃O₄ NPs were investigated comprehensively. A series of testing methods including X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS) and Mössbauer spectrum testified that the as-obtained samples were pure magnetite phase. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) indicated the amount of solvent and the reaction time could tune the shape and size of Fe₃O₄ NPs. The truncated cube and octahedron were the intergradations for the cube. The oleic acid played an important role in inhibiting the crystal growth along the <100> direction and accelerating that along the <111> direction of magnetite. The variation trend of the saturation magnetization (Ms) was in agreement with that of the particle size, which was attributed the contribution from the small-size effect or surface effect. The variation of the coercivity (Hc) depended on that of the magnetic anisotropy, the surface anisotropy or the shape anisotropy.

Keywords: Fe₃O₄; Nanocubes; Shape control; Structure; Magnetic properties.

*Corresponding author: Jinghai Yang, Yang Liu

E-mail address: jhyang1@jlnu.edu.cn (J. Yang), liuyang@jlnu.edu.cn (Y. Liu)

Tel.: +86 434 3294566; fax: +86 434 3294566.

^a College of Physics, Jilin Normal University, Siping 136000, China

^b Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China

^c GLOBALFOUNDRIES Singapore Pte. Ltd, 60 Woodlands Industrial Park D Street 2738406, Singapore

^d School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China e School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China

^fUnited Microelect Corp Ltd, 3, Pasir Ris Dr 12, Singapore 519528, Singapore

Download English Version:

https://daneshyari.com/en/article/4914971

Download Persian Version:

https://daneshyari.com/article/4914971

<u>Daneshyari.com</u>