Accepted Manuscript

The effect of riser end geometry on gas-solid hydrodynamics in a CFB riser operating in the core annular and dilute homogeneous flow regimes

Ronald W. Breault, Esmail R. Monazam, Lawrence J. Shadle, Steve Rowan, Luke H. Macfarlan

PII: S0032-5910(17)30144-4

DOI: doi:10.1016/j.powtec.2017.02.017

Reference: PTEC 12355

To appear in: Powder Technology

Received date: 26 April 2016 Revised date: 27 January 2017 Accepted date: 10 February 2017

Please cite this article as: Ronald W. Breault, Esmail R. Monazam, Lawrence J. Shadle, Steve Rowan, Luke H. Macfarlan, The effect of riser end geometry on gas-solid hydrodynamics in a CFB riser operating in the core annular and dilute homogeneous flow regimes, *Powder Technology* (2017), doi:10.1016/j.powtec.2017.02.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The effect of riser end geometry on gas-solid hydrodynamics in a CFB riser operating in the core annular and dilute homogeneous flow regimes

Ronald W. Breault¹, Esmail R. Monazam^{1,2} Lawrence J. Shadle¹, Steve Rowan^{1,3} Luke H. Macfarlan¹

¹National Energy Technology Laboratory U. S. Department of Energy 3610 Collins Ferry Rd. Morgantown, West Virginia 26507-0880

²REM Engineering Services, PLLC 3537 Collins Ferry Rd. Morgantown, West Virginia 26505

³Oak Ridge Institute for Science and Education 3610 Collins Ferry Rd. Morgantown, West Virginia 26507-0880

Abstract

Riser hydrodynamics are a function of the flow rates of gas and solids as well as the exit geometry, particularly when operated above the upper transport velocity. This work compares the exit voidage for multiple geometries and two different solids: Geldart group A glass beads and Geldart group B coke. Geometries were changed by modifying the volume of an abrupt T-shaped exit above the lateral riser exit. This was accomplished by positioning a plunger at various heights above the exit from zero to 0.38 m. A dimensionless expression used to predict smooth exit voidage was modified to account for the effect of the depth of the blind-T. The new correlation contains the solids-gas load ratio, solids-to-gas density ratio, bed-to-particle diameter ratio, gas Reynolds Number, as well as a term for the exit geometry. This study also found that there was a minimum riser roof height above the blind-T exit beyond which the riser exit voidage was not affected by the exit geometry. A correlation for this minimum riser roof height has also been developed in this study. This study covered riser superficial gas velocities of 4.35 to 7.7 m/s and solids circulation rates of 1.3 to 11.5 kg/s.

Keywords: Riser, end effects, core annular flow

Introduction

-

¹ Corresponding author: Tel. 304-285-4486; fax – 304-285-4403; email – ronald.breault@netl.doe.gov

Download English Version:

https://daneshyari.com/en/article/4915131

Download Persian Version:

https://daneshyari.com/article/4915131

<u>Daneshyari.com</u>