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A B S T R A C T

The measurement of the rupture force for an axially strained liquid bridge has been the subject of research
for the last three decades and is fundamental to the understanding of the behavior of multiphase systems in
granular materials. The study herein presents experimental work measuring the rupture force of pendular
and capillary bridges in a three-particle configuration providing an axial and a shear strain. Results and
subsequent analysis indicates that the rupture force and maximum rupture distance are the effect of surface
characteristics, straining mechanism and effective liquid volume. For systems of more than two particles,
we note that the effective packing fraction of the particles has a significant impact on the force required to
rupture such a bridge.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Investigating the phenomena involved in solid–liquid interac-
tions is important due to the ubiquitous presence of compound
solid–liquid systems among a variety of industries (i.e. pharmaceuti-
cal, chemical, cosmetic, and agricultural) and with diverse chemical
and physical applications, such as agglomeration, and crystal growth.
In these systems strong adhesion can result from the liquid menis-
cus that forms around the point of contact between solid surfaces [1].
This force is called the capillary force. In a two-particle system, these
menisci bind solid surfaces by creating a bond between two finite
contact points. The phenomenon of capillary adhesion is of great
importance for granular materials and powders in the macroscale [2].
While the formation of agglomerates is commonplace in the indus-
trial processing of solid mixtures, axial straining of a liquid bridge, in
particular, can be evidenced in the granulation process.

Understanding and modeling multiphase systems is complex due
to the different forces acting on the solids depending on the vol-
ume of fluid present. Depending on the liquid volume-capillary,
surface and viscous forces can appear and change the mechanical
properties of the mixture, such as its tensile strength [3–5]. The
increasingly intricate interactions between the solid and liquid com-
ponents, as the saturation level increases, has limited most of the
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available experimental studies to the pendular regime, and analyti-
cal models are developed for stable pairwise, axisymmetric bridges.
Furthermore, the study of the formation and rupture of binding liq-
uid networks has the added problem of bridge stability, particularly
when dealing with bridges linking spherical solids. To forgo this
problem most studies are limited to working with small liquid vol-
umes (relative to particle size) such that a stable meniscus can be
sustained between the solids [6,7]. A formal definition of what we
consider to be small liquid volumes will be discussed later.

The attraction or repulsion forces between solids and the intersti-
tial liquid are a result of a pressure differential across the interface.
The pressure differential can be calculated using the Young–Laplace
(YL) equation if the shape of the meniscus is known [2]. Megias-
Algacil & Gauckler [8,9] recently presented a study for the capillary
forces between spheres for liquid volumes forming both concave and
convex liquid bridges. The results analyze the nature of the cohe-
sive forces and present values for contact angle and relative liquid
volume, defined as Vrel = V/

(
4
3pR3

)
, for which a concave or con-

vex meniscus can be expected. Urso et al. [10,11] present theoretical
two-dimensional studies for the rupture of liquid bridges includ-
ing the transitional states between pendular and capillary saturation
level. They introduce equations to calculate the area of the liquid
bridge surface for different saturation states and meniscus geome-
tries. Murase et al. [12,13] presented a first attempt at characterizing
the straining phenomena for a liquid bridges of different volumes
held between three spheres both experimentally and computation-
ally. They focused largely on the differences between dynamic and
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static pendular bridge forces and conclude that the maximum tensile
force of the liquid bridge is the same for the two and three sphere
system for a static rupture mechanism, but two times larger for the
three-particle configuration under dynamic rupture conditions.

It is the objective of this study to perform experimental mea-
sures for the rupture force of menisci between two- and three-sphere
interactions. We will follow the taxonomy described by Urso et al.
[10,11], where bridges between two particles are termed pendu-
lar, systems where the particle interstices are fully saturated are
called capillary, and intermediate saturations where there are vary-
ing degrees of interstitial voids are considered to represent funicular
saturation. This work will measure both pendular and capillary rup-
ture forces with a focus on the impact of bridge volume and particle
symmetry effects.

1.1. The rupture of a pendular liquid bridge

The rupture force for pendular liquid bridges has been studied
for decades [2,4,5,14-18]. Particle–plane and particle–particle inter-
actions have been modeled for spherical particles and small liquid
volumes. In general, the solution to the rupture energy of a liquid
bridge can be found by considering it as a two-part problem. First,
the stability problem and second, the net attraction/repulsion forces
induced by the formation of liquid bridges [4].

When considering a packed bed, the theory for different satu-
ration levels identifies the limit of the pendular regime at ≈13%
moisture content, while the funicular regime is identified as corre-
sponding to a moisture content above 13% and up to 25% [19]. It is
known additionally, that for small enough volumes, where the effect
of gravity can be neglected, the mean curvature of the bridge surface
between two spheres may be approximated as constant and the con-
tact point is fixed [20]. The maximum volume of fluid, for which the
effects of gravity can be considered negligible, is estimated using the
following equation:

j =
√

s

gq
, (1)

where ql is the density difference between the solid and the liquid
phases, and j is known as the capillary constant, or capillary length.

In order to model such interactions it is necessary to solve the
Young–Laplace (YL) equation for capillary forces in the presence of
a curved liquid-vapor interface. The pressure differential across the
liquid-gas interface, is defined by the shape of the meniscus. It is
commonplace to assume the shape of the meniscus is described
by a solid of revolution [21]. While numerical solutions for the YL
equation for a wide variety of revolution surfaces are known, more
often than not, an equation based on a toroidal shape is imple-
mented [7,22,23]. Based on this approach, in order to perform an
axially oriented force balance, first a system in equilibrium is defined
(Fig. 1). Then, making use of the surfaces of revolution to calculate the
pressure differential across the liquid–gas interface according to YL,
one employs the theories of capillarity and lubrication to calculate
the total cohesive force [24,25].

The work discussed herein follows the procedure described by
Pitois et al. for the rupture energy of a pendular liquid bridge [24].
The simplified dimensionless expression derived for the capillary
force contribution takes the form

F∗
cap =

Fcap

sR
= 2p cos0fv, (2)

with,

fv = 1 −
(

1 +
(2V∗)
(pD∗2)

) −1
2

, (3)

Fig. 1. Sketch of a liquid bridge formed between two spheres. P1 and P2 are planes of
symmetry.

where D is the distance between the two solid surfaces, s is the fluid
surface tension, and 0 is the solid-liquid wetting angle. The star sym-
bol (∗) denotes the dimensionless form of an expression. The length
scale to write dimensionless parameters is the radius of the sphere R,
such that V∗ = V/R3, D∗ = D/R. Similarly, we use as the force scale
sR (see Eq. (2)).

1.2. Viscous forces

An expression for the viscous force contributions to granular sys-
tems was developed by Ennis et al. based on a derivation of the
Reynolds equation to describe thin film behavior [7]. The function
revealed how the contribution of lubrication forces to the total rup-
ture force becomes increasingly important for high viscosity fluids.
While the objective of the current work is focused on low viscosity
fluids only, we have implemented the viscous contribution as part of
the computational model for completion. The viscous contribution,
in its dimensionless form, can be written as:

F∗
visc =

3
2
p

Ca

D∗ fv2 (4)

where, Ca is the capillary number defined as Ca = ls/a, and l is the
viscosity of the fluid. It follows that the total (dynamic) force is the
sum of the capillary and viscous terms. A relationship between the
liquid bridge volume, the liquid–solid contact angle and the quasi-
static rupture distance, was presented by Lian et al. [22] for liquid
volumes where the effect of gravity can be neglected. Their rupture
distance can be written as:

D∗
rupt �

(
1 +

0

2

)
V∗1/3. (5)

The total liquid bridge force contribution can then be expressed as:

F∗
tot = 2p cos0fv +

3
2
p

Ca

D∗ f
2
v (6)

Key contributors to viscous forces, such as wetting angles, and
stability on curved surfaces have become areas of independent stud-
ies [26–28]. Results indicated that minimal shifts in the shape of
the meniscus had a significant impact on the evolution and rup-
ture of the bridge. The present work will be concerned with steady
state, non-thermodynamic equilibrium, and will assume the bridge
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