EI SEVIER

Contents lists available at ScienceDirect

## **Powder Technology**

journal homepage: www.elsevier.com/locate/powtec



# Ultrafine $Gd_2O_2S$ :Pr powders prepared *via* urea precipitation method using $SO_2/SO_4^{2-}$ as sulfuration agent—A comparative study



Guoqing Wu <sup>a,b</sup>, Haiming Qin <sup>a,\*</sup>, Shaowei Feng <sup>a</sup>, Xiaojian Tan <sup>a</sup>, Zhaohua Luo <sup>a</sup>, Yongfu Liu <sup>a</sup>, Hezhu Shao <sup>a</sup>, Jun Jiang <sup>a,\*</sup>, Haochuan Jiang <sup>a,\*</sup>

- <sup>a</sup> Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- <sup>b</sup> Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China

#### ARTICLE INFO

Article history:
Received 25 July 2016
Received in revised form 30 September 2016
Accepted 5 October 2016
Available online 11 October 2016

Keywords: Scintillator Urea precipitation Luminescent phosphor Oxysulphide

#### ABSTRACT

Nano-rods and tremelliform  $Gd_2O_2S$ :Pr powders were prepared via a urea precipitation method using  $SO_2$  and  $SO_4^{2-}$  as sulfuration agent, respectively.  $Gd_2O_2S$ :Pr nano-rods with diameter of about 200 nm were obtained while the scale of tremelliform  $Gd_2O_2S$ :Pr reaches tens of microns.  $Gd_2O_2S$ :Pr nano-rods exhibits better crystallinity and stronger luminescence intensity compared to that of tremelliform  $Gd_2O_2S$ :Pr. Intensive study on their formation process and mechanism is presented in this work. It is proposed that  $Gd_2O_2S$ :Pr nano-rods were obtained from  $Gd_2(SO_3)_3 \cdot 3H_2O$  nano-rods synthesized via a dissolution-deposition process while tremelliform  $Gd_2O_2S$ :Pr is prepared via an oriented growth process using  $SO_4^{2-}$  as sulfuration and regulation agent. As prepared  $Gd_2O_2S$ :Pr powders show strong green emission light at 512 nm under excitation of 318 nm ultraviolet light. Optimal concentration of  $Pr^{3+}$  is around 1 mol% since it exhibits the highest luminescence intensity at that concentration. This study is extremely prospective for the preparation and morphology control of sulphide luminescent materials.

© 2016 Elsevier B.V. All rights reserved.

#### 1. Introduction

Luminescent material is of an energy conversion medium that can emit photons under high energy excitation [1–3]. Among which, inorganic luminescent material plays important role in the mediation of scintillation applications, synthetic spectrum, display and LED lighting, etc. [4–7]. Sulphide phosphor is of an important luminescent material with many prospective applications [8–10]. Among which, Gd<sub>2</sub>O<sub>2</sub>S is of a typical material that obtains advantage properties such as excellent chemical durability, high thermal stability, high melting point and density which makes it appropriate matrix material for activator atoms [11]. Especially, its successful application as detector material in CT equipment manufactured by Siemens, Philips, etc. is worthy to be mentioned [12].

Morphology and microstructure control of luminescent material has attracted much attention since extremely high luminescent efficiency and novel designation of luminescent material can be achieved accordingly [13,14]. Particularly, low-dimensional structures are the fundamental units for anisotropic shape control, presenting general shape and assembly control strategies for more complex structures. For example, nanorods and nanowires with restricted dimension have also been

E-mail addresses: qinhaiming@nimte.ac.cn (H. Qin), jjun@nimte.ac.cn (J. Jiang), jianghaochuan@nimte.ac.cn (H. Jiang).

extensively explored and investigated about the influence of shape and dimensionality on the physical properties [15]. Material microstructure designation and control have profound impact on the luminescence of phosphor [16,17]. Urea precipitation method has been developed as an important approach for the preparation of ultrafine inorganic particles [18-20]. Stable pH obtained during the thermal decomposition of urea in aqueous solution makes it quite promising for precise composition control of nanopowders. Clear decomposition mechanism of urea provides researchers possibility to analyze the evolution process of ultrafine particles from its initial forming period. That is quite important for morphology control of particles prepared via this approach. Especially this method can accomplish both homogenous and anisotropic growth of precursor particles according to experimental parameter regulation [21]. In 2013, Qin [22] reported the process and mechanism of anisotropic absorption of  $SO_4^{2-}$  on different facets of the  $Y_2O_3$  precursor nucleus using (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> as regulation agent. That also provides new approach to introduce S element into precipitant. After that, Lian reported in 2015 the preparation of Gd<sub>2</sub>O<sub>2</sub>S using urea precipitation method [23]. Previously, many researchers have also reported synthesis of Gd<sub>2</sub>O<sub>2</sub>S in solid state method (SSR) [24–26] and emulsion liquid membrane (ELM) [27,28]. Among the synthesis methods above, SSR method has an advantage of considerable productivity based on its high reliability. Nevertheless, such a method is based on the high temperature reaction of mixed powders, which is difficult to obtain ultrafine powders with high purity and defined morphology. ELM precipitation method

<sup>\*</sup> Corresponding authors.



**Fig. 1.** X-ray diffraction pattern of powders at different stages of Pso<sub>2</sub> (a) precursor, (b) powders calcined at 800 °C in air, (c) sulfonated powders using SO<sub>2</sub> at 450 mL/min for 15 min, (d) reduced powders calcined at 800 °C in 20%  $N_2$  and 80%  $H_2$  hybrid atmosphere.

has been proved a possible synthesis technique for preparing various morphological  $Gd_2O_2S$  phosphors. Formation of precipitation is by a means of which the metal ions can be extracted from external water phase into organic membrane and then stripped into internal water phase. However, such method is quite complicated and time consuming, which leads to its low yield. Hence it is difficult to achieve sulphide phosphors such as  $Gd_2O_2S$  with defined morphology effectively. Back in the 1990s,  $SO_2$  sulfuration method was also recorded in some patents [29,30] for the preparation of sulphide phosphors, which is believed to be an effective way to get particles sulfonated. However, no reports have been covered in research papers.

In present work, urea precipitation method was performed to prepare  $Gd_2O_2S$  precursor powders with defined morphology. A comparative study on two sulfuration approaches was then introduced. In the first case,  $SO_2$  was applied as the sulfuration agent of the calcined oxide prepared via urea precipitation method. While in the second case,  $SO_4^{2-}$  was introduced into the urea precipitation system as the sulfuration agent. Nano-rods and tremelliform  $Gd_2O_2S$  were prepared by using  $SO_2$  and  $SO_4^{2-}$  as sulfuration agent, respectively.  $Gd_2O_2S$  nano-rods with diameter of about 200 nm were obtained while the scale of tremelliform  $Gd_2O_2S$  reaches tens of microns. Intensive study on their formation process and mechanism are presented in this work. It is proposed that  $Gd_2O_2S$  nano-rods were obtained from  $Gd_2(SO_3)_3 \cdot 3H_2O$  nano-rods synthesized via a dissolution-deposition process while tremelliform  $Gd_2O_2S$  was prepared via an oriented growth process using  $SO_4^{2-}$  as sulfuration agent and regulation agent.

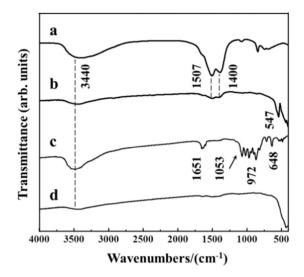



Fig. 3. FTIR spectra of powders at different stages of Pso<sub>2</sub>: (a) precursor, (b) powders calcined at 800 °C in air, (c) sulfonated powders using SO<sub>2</sub> at 450 mL/min for 15 min, (d) reduced powders calcined at 800 °C in 20%  $N_2$  and 80%  $H_2$  hybrid atmosphere.

Praseodymium (Pr) ion is the most widely used active ion in  $Gd_2O_2S$  medium for its appropriate energy level system and high efficiency for scintillation application [12]. In present work,  $Pr^{3+}$  was added in  $Gd_2O_2S$  matrix as active ion. It is found that  $Gd_2O_2S$ :Pr nano-rods exhibited better crystallinity and stronger luminescence intensity compared to that of tremelliform  $Gd_2O_2S$ :Pr. As prepared  $Gd_2O_2S$ :Pr powders showed strong green emission light at 512 nm under excitation of 318 nm ultraviolet light. Optimal concentration of  $Pr^{3+}$  is around 1 mol% since it exhibits the highest luminescence intensity at that concentration range. Work accomplished in this paper is prospective for the efficiency improvement and feasibility in the preparation of sulphide phosphors.

#### 2. Experimental

Commercially available  $Gd_2O_3$  powders (GanZhou QianDong Rare Earths Group Co. Ltd. China, 99.99%),  $Pr_6O_{11}$  powders (Alfa Aesar, 99.99%), HNO $_3$  (Sinopharm chemical reagent), urea (Aladdin, 99.99%),  $Pr_6O_{11}$  Na $_2(Properties O_3)$  (Sinopharm chemical reagent, 99%) and  $Properties O_3$  (Aladdin, 99.99%) were used as starting materials.

In a typical synthetic procedure for  $Gd_2O_2S$ :Pr powders using  $SO_2$  as sulfuration agent (the procedure is denoted as  $Pso_2$ ),  $Gd_2O_3$  and  $Pr_6O_{11}$  mixture powders were dissolved in diluted HNO $_3$  to get transparent solution. 25 mL as prepared solution and urea were dissolved in 975 mL distilled water. In all cases, concentration of  $Gd^{3+}$  was kept at 0.015 M while urea was kept at 0.5 M.  $Pr^{3+}$  was added according to ratio Pr/

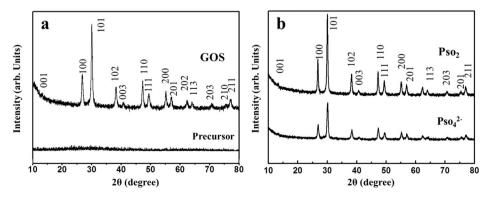



Fig. 2. (a) X-ray diffraction pattern of precursor and reduced powder calcined at 800 °C in 20%  $N_2$  and 80%  $H_2$  hybrid atmosphere prepared in  $Pso_4^{2-}$  (b) X-ray diffraction intensity comparison of the final products prepared in  $Pso_2$  and  $Pso_4^{2-}$ .

### Download English Version:

# https://daneshyari.com/en/article/4915320

Download Persian Version:

https://daneshyari.com/article/4915320

<u>Daneshyari.com</u>