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The past decades have seen increasing interest in developing pyrolysis pathways to produce biofuels and
bio-based chemicals from lignocellulosic biomass. Pyrolysis is a key stage in other thermochemical conver-
sion processes, such as combustion and gasification. Understanding the reaction mechanisms of biomass
pyrolysis will facilitate the process optimization and reactor design of commercial-scale biorefineries. How-
ever, the multiscale complexity of the biomass structures and reactions involved in pyrolysis make it chal-

Kf?ywords'. lenging to elucidate the mechanism. This article provides a broad review of the state-of-art biomass
Biomass . . . . . . .
Pyrolysis mechanism pyroly51s.res§ar§h.. Considering the complexity of thg biomass struc.tur~e, the py.roly51s cl}aractepstlcs of its
Components three major individual components (cellulose, hemicellulose and lignin) are discussed in detail. Recently
Kinetics developed experimental technologies, such as Py-GC—MS/FID, TG-MS/TG-FTIR, in situ spectroscopy, 2D-
Selective catalysis PCIS, isotopic labeling method, in situ EPR and PIMS have been employed for biomass pyrolysis research,
Pretreatment including online monitoring of the evolution of key intermediate products and the qualitative and quantita-
tive measurement of the pyrolysis products. Based on experimental results, many macroscopic kinetic
modeling methods with comprehensive mechanism schemes, such as the distributed activation energy
model (DAEM), isoconversional method, detailed lumped kinetic model, kinetic Monte Carlo model, have
been developed to simulate the mass loss behavior during biomass pyrolysis and to predict the resulting
product distribution. Combined with molecular simulations of the elemental reaction routes, an in-depth
understanding of the biomass pyrolysis mechanism may be obtained. Aiming to further improve the quality
of pyrolysis products, the effects of various catalytic methods and feedstock pretreatment technologies on
the pyrolysis behavior are also reviewed. At last, a brief conclusion for the challenge and perspectives of bio-
mass pyrolysis is provided.
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1. Introduction

Consumption of fossil fuels worldwide has increased tremen-
dously in last few decades, which leads to several environmental
issues, including greenhouse gas emissions and deteriorating air
quality caused by pollutants such as SOy, NOy and fine particulate
matter. Moreover, the fluctuation of fossil fuel prices and the deple-
tion of fossil resources have shadowed the global economy. The pro-
duction of carbon-neutral and low-emission fuels from renewable
resources, such as biomass, is of growing importance in the gradual
substitution of conventional fossils. Biomass is biological material
from living, or recently living organisms produced directly or indi-
rectly by photosynthesis, most often plants or plant-derived materi-
als [1-3]. Biomass resources are widely available in nature. It is
estimated that the global biomass production is approximately 100
billion tons per year [4]. As the only renewable carbonaceous
resource, biomass has the potential to produce heat, electricity, fuel,
chemicals, and other products [5,6]. The International Energy Agency
(IEA) suggests that bioenergy has the potential to provide 10% of the
world's primary energy supply by 2035, and biofuels can replace up
to 27% of world transportation fuel by 2050 [7].

Biomass can be converted into fuels and chemicals through bio-
chemical or thermochemical processes. Digestion (anaerobic and
aerobic) and fermentation are typical biochemical processes used to
produce methane and alcohols [8,9]. The main thermochemical pro-
cesses include pyrolysis, gasification, combustion, hydrothermal liq-
uefaction and hydrothermal carbonization [10,11]. Among these
thermochemical pathways, pyrolysis, the thermal decomposition of
organics in the absence of oxygen, has been extensively developed
as a promising platform to produce fuels and chemicals from various
types of biomass. Pyrolysis produces char, liquid and gas products,
the distribution of which strongly depends on the reaction

conditions. Fast pyrolysis of biomass at rapid heating rates and short
hot vapor residence times (< 1s) produces liquid with yield up to
75 wt.% [12,13]. The pyrolysis liquid, which is normally called bio-
oil, can be further upgraded to transportation fuels and value-added
chemicals. The char and gaseous products can be combusted to pro-
vide energy for the pyrolysis reaction or heat/power generation [12].
Many potential agricultural and environmental applications of
char are also being explored to enhance the value chain of the
pyrolysis process [12,14]. Techno-economic analysis showed that
transportation fuel production from biomass via pyrolysis-based
pathways had economic advantages over other conversion path-
ways, such as gasification and biochemical pathways [15-18].
Due to the huge demand for liquid transport fuels, biomass
pyrolysis technology will attract increasing interest from both
academia and industry [19].

Biomass slow pyrolysis, particularly wood carbonization and dis-
tillation, has been used by humans for more than a thousand years.
Nevertheless, the pioneering studies on biomass pyrolysis were initi-
ated in 19th century [20]. The effect of the reaction conditions on the
yields of the solid, liquid and gas pyrolysis products was first
reported in 1875 by Gruner [21]. However, little progress was made
until the 1980s. During this stage, the kinetics of biomass/cellulose
pyrolysis received significant attention. In 1956, Stamm [22]
reported the kinetics of wood and cellulose thermal degradation and
suggested that thermal degradation followed a first-order reaction
model. In 1970, Roberts [23] reviewed the pyrolysis kinetics of bio-
mass and related substances. The results showed that pyrolysis may
proceed through different reaction routes. In 1979, the classic Broi-
do—Shafizadeh (B-S) model for cellulose pyrolysis based on the for-
mation of char, volatiles and gas via different pathways was
proposed [24]. These findings provide some fundamentals for fur-
ther development of biomass pyrolysis technology.
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