Contents lists available at ScienceDirect

Progress in Energy and Combustion Science

journal homepage: www.elsevier.com/locate/pecs

Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows

Weiwei Cai^{a,b}, Clemens F. Kaminski^{b,*}

^a School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
^b Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK

ARTICLE INFO

Article History: Received 4 June 2016 Accepted 12 November 2016

Keywords: Flow diagnostics Absorption spectroscopy Classical tomography Nonlinear tomography Reactive flows Engine testing Frequency-agile spectroscopy

ABSTRACT

Optical imaging techniques are ubiquitous for the resolution of non-uniformities in gas flows. Planar imaging techniques such as laser-induced fluorescence are well established and applied extensively in turbulent reactive flows, offering both high temporal and spatial resolutions. However, planar imaging suffers from a critical disadvantage, the requirement for spatially continuous optical access over large solid angles in both the excitation and detection paths and this precludes their application in many practical situations, for example those encountered in engine testing. Tomographic absorption spectroscopy, TAS, on the other hand, shares many of the advantages of planar imaging techniques but reduces the demands for optical access, because high quality data can be obtained with sparsely sampled volumes. The technique has unrivalled potential for imaging in harsh environments, for example for in-cylinder/in-chamber engine measurements. TAS is beginning to mature as a technique for the simultaneous imaging of temperature and species concentration, and is experiencing a surge of interest due to progress in laser technology, spectroscopy, and theoretical developments of nonlinear tomography techniques. The recent advancements in broad bandwidth, frequency-agile laser sources massively enrich the spectral information obtainable in TAS. Furthermore, nonlinear tomography enables the recovery of multiplexed information from a single tomographic inversion. The utilization of multispectral information improves the immunity of TAS to experimental noise and makes possible the simultaneous imaging of temperature, pressure, and multiple species. Nonlinear tomography can also be used to empower the imaging potential of sensitive and robust absorption techniques, such as wavelength modulation spectroscopy, for use in harsh and even optically dense environments. In combination, this greatly extends the applicability of TAS for more general and harsh scenarios in combustion technology. In this article we review basic concepts and mathematical foundations of classical absorption tomography, proceeding to more advanced recent concepts based on nonlinear tomography, and providing an extensive review of experimental demonstrations and practical applications in the context of state-of-the-art combustion research.

© 2016 Published by Elsevier Ltd.

1. Introduction

Combustion remains the dominant form of energy production in use today, and is an underpinning factor for modern society [1,2]. This dominance is expected to continue for several decades into the future and thus a full understanding and effective control of combustion processes is of paramount importance to improve energy efficiency and to reduce the formation of pollutant species such as particulates, NO_x, SO_x, and greenhouse gases [3,4]. Key to an understanding of combustion is an ability to measure chemical and physical flow parameters at high temporal and spatial resolution, and to untangle the complex interplay between flow dynamics, chemical kinetics, and heat and mass transfer, which remains a formidable

Corresponding author.

E-mail address: cfk23@cam.ac.uk (C.F. Kaminski).

http://dx.doi.org/10.1016/j.pecs.2016.11.002 0360-1285/© 2016 Published by Elsevier Ltd. scientific challenge to this day [5]. There are several key parameters such as temperature, species concentration, equivalence ratio, heat release rate, and velocity, the quantification of which is essential to any such effort, and requires their measurement under physically realistic conditions. Numerous non-invasive optical sensing techniques have been developed during the past decades for the diagnosis of reactive flows. For simple laminar flames, such as laboratory McKenna and Bunsen flames, point measurement techniques can be used for the measurement of temperature, such as laser induced grating spectroscopy (LIGS) [6], coherent anti-Stokes Raman scattering (CARS) [7–10], and two-line atomic fluorescence thermometry (TLAF) [11–16]; Laser Doppler velocimetry (LDV) [17,18] for point measurements of local velocity; line-of-sight-averaged techniques such as tunable diode laser absorption spectroscopy (TDLAS) [19,20] for the simultaneous retrieval of temperature, species concentration and pressure; and cavity enhanced techniques (CEAS) [21-26] for

Nomenclature	
n	line-of-sight-integrated absorbance
P R[a,u]	radius of the region of interest
r[a.u.]	distance to the origin
f(r)	spatial distribution of absorbance along
	the radial direction
η	an integration variable
i	laser beam path
х, у	x and y coordinates
Θ [rad]	angle between beam path and x axis
t [a.u.]	distance from origin to the beam path
x	image pixel values arranged in a vector
	format
I	total number of beams
J	total number of pixels
$A_{I \times J}$	weight matrix
a _i	the <i>i</i> th row of A
β	relaxation factor
Ю Ā	a linear operator
Ψ_k	eigenrunctions
ζ	eigenvalues
L	matrix format
σ	regularization factor
8 R	resolution matrix
I	identity matrix
$\bar{\Psi}$	a vector of complex numbers
R _i	ratio of integrated absorbance at two
J	transitions of the <i>j</i> th pixel
μ	spatial distributions of the flow
	parameters
Π	a function describing a physical process
Δ	grid spacing
<i>T</i> [K]	temperature
X	absorber concentration
<i>P</i> [atm]	pressure
LIGS	laser-induced grating spectroscopy
ILAF	two-line atomic fluorescence thermo-
	metry
IDLAS	scopy
PLIF	planar laser-induced fluorescence
LIPS	laser-induced phosphorescence spectro-
	scopy
LOS	line-of-sight
ABNT	absorption-based nonlinear tomography
CFWMS	calibration-free wavelength modulation
	spectroscopy
TPA	three-point Abel
ART	algebraic reconstruction technique
SR	spatial resolution
LSF	line spread function
ESF	edge spread function
ROI	region of interest
MART	multiplicative algebraic reconstruction
	technique
TRKB	tomographic reconstruction via Karhun-
TCI -	LOEVE DASIS
I SLS	tunable semiconductor lasers
QULS DRP	qualitum cascade lasers
אמט	

CA	crank angle
α	absorption coefficient
p _c	computed projection
p_m	measured projection
R_{T}	regularization term for T distribution
Ry	regularization term for X distribution
1/ _X	regularization factor for R_{π}
<i>Y</i> 1 2/	regularization factor for P
γx	modulation donth
$u[cm^{-1}]$	
v[cm]	laser frequency
I [a.u.]	laser intensity
ι_0 [a.u.]	linear modulation amplitude
i ₂ [a.u.]	nonlinear modulation amplitude
σ_m	std of measurement noise
f_m [kHz]	modulation frequency
ψ_1 [rad]	linear phase shift with respect to fre-
	guency modulation
ψ_2 [rad]	nonlinear phase shift with respect to fre-
72[]	quency modulation
$S[cm^{-2}/atm]$	line strength
	http://www.inconfigures
Π_k	
τ	
$S_{1f}[a.u.] S_{2f}[a.u.]$	Ist and 2nd orders of harmonic signals
G	scaling factor accounting for electrical
_	and optical gains
<i>I</i> ₀ [a.u.]	average laser intensity at the line-center
F	cost function
T _{SA}	temperature parameter in the simulated
	annealing algorithm
Ĕ	annealing rate
et. ev	normalized temperature and concentra-
	tion errors
Ttrue [K] Trec [K]	ground truth and reconstructed tempera-
	furo
V V	tule
X_1, X_2	concentration for a two-zone problem
$I_1[K], I_2[K]$	temperature for a two-zone problem
CARS	coherent anti-Stokes Raman scattering
LDV	laser Doppler velocimetry
CEAS	cavity enhanced absorption spectroscopy
PIV	particle imaging velocimetry
FRS	filtered Raman scattering
TAS	tomographic absorption spectroscopy
CAT	classical absorption tomography
SNR	signal-to-noise ratio
FRD	filtered back projection
	maximum likelihood expectation maxi
IVILLIVI	maximum likelihood expectation maxi-
	maximum likelihood expectation maxi- mization
AART	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni-
AART	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que
AART SIRT	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction
AART SIRT	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique
AART SIRT MTF	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function
AART SIRT MTF PSF	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function
AART SIRT MTF PSF DFT	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform
AART SIRT MTF PSF DFT FDML	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking
AART SIRT MTF PSF DFT FDML TDI S	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers
AART SIRT MTF PSF DFT FDML TDLs DFB	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers distributed feedback
AART SIRT MTF PSF DFT FDML TDLs DFB TDC	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers distributed feedback ton dead center
AART SIRT MTF PSF DFT FDML TDLs DFB TDC DAG	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers distributed feedback top dead center
AART SIRT MTF PSF DFT FDML TDLs DFB TDC DAS	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers distributed feedback top dead center direct absorption spectroscopy
AART SIRT MTF PSF DFT FDML TDLs DFB TDC DAS POD	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers distributed feedback top dead center direct absorption spectroscopy proper orthogonal decomposition
AART SIRT MTF PSF DFT FDML TDLs DFB TDC DAS POD SA	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers distributed feedback top dead center direct absorption spectroscopy proper orthogonal decomposition simulated annealing
AART SIRT MTF PSF DFT FDML TDLs DFB TDC DAS POD SA	maximum likelihood expectation maxi- mization additive algebraic reconstruction techni- que simultaneous iterative reconstruction technique modulation transfer function point spread function discrete Fourier transform Fourier domain mode-locking tunable diode lasers distributed feedback top dead center direct absorption spectroscopy proper orthogonal decomposition simulated annealing

Download English Version:

https://daneshyari.com/en/article/4915635

Download Persian Version:

https://daneshyari.com/article/4915635

Daneshyari.com