ELSEVIER

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Effect of O₂ enrichment on acid gas oxidation and formation of COS and CS₂ in a rich diffusion flame

Yang Li, Qinghua Guo, Xinlei Yu, Zhenghua Dai, Yifei Wang, Guangsuo Yu, Fuchen Wang*

Key Laboratory of Coal Gasification and Energy Chemical Engineering of Ministry of Education, East China University of Science and Technology, PR China Engineering Research Center for Coal Gasification in Shanehai. PR China

HIGHLIGHTS

- Oxidation of acid gas in a non-premixed flame was studied under oxygen enriched condition.
- Reactivity of CO2 was significantly promoted in an O2 enhanced flame.
- COS could be initially formed in the flame inner core by reaction involving CO2 and sulfur species.
- Formation of COS and CS₂ is promoted under O₂ enriched combustion.

ARTICLE INFO

Keywords: Hydrogen sulfide oxidation Oxygen enriched combustion Carbon dioxide reactivity Carbon disulfide Carbonyl sulfide

ABSTRACT

 O_2 enriched combustion is applied to a non-premixed acid gas (AG) flame, in which AG and air are injected separately into a vertical reactor via a coaxial burner at atmosphere pressure. Equilibrium predictions of AG oxidation were performed using Aspen Plus and lab-scale experiments with particular focus on formation of COS and CS_2 were undertaken under different combustion conditions. The effects of equivalence ratio ($\Phi = 0.8, 1.0$ and 3.0) and initial O_2 concentration (OC) in air (21, 30 and 50 vol%) have been studied and the flame is interpreted by analyzing the axial temperature and species concentration distributions along the reactor.

AG diffusion flame could be divided into three zones, namely AG decomposition, oxidation and complex reaction zones, among which decomposition zone is tightly associated with formation of COS and CS $_2$. It is shown that Φ generally determines the flame temperature and controls the H_2 S oxidation degree and production rate of H_2 and CO. Reactivity of CO_2 primarily expressed via $CO_2 + H = CO + OH$ during the fuel rich flame. COS is primarily produced in the flame inner core via reactions jointing CO_2 and sulfur species, consequently its formation shows a low sensitivity to Φ in the air-supplied flame. O_2 enrichment basically contributes to higher flame temperature, accelerated H_2 S oxidation and advanced CO production. Also an increasing tendency for H_2 S to decompose into H_2 and S_2 can be observed. And this factor directly triggers the formation of COS and CS_2 via increasing the presence of CO and sulfur species. COS is formed within extended channels involving the primary production by reaction of SH + CO_2 and the secondary by reactions between CO and sulfur species. The CS_2 formation is more complex, mainly comprises of reactions involving CS intermediate and evidently it is enhanced under O_2 enriched combustion.

1. Introduction

Hydrogen sulfide can be widely spotted in raw natural gas. Also it is a significant by-product during various fossil fuel processing industries covering gas sweetening, gasification of coal or biomass and any other desulfuration facilities [1,2]. Generally the industrial AG, which is mainly composed of H_2S and CO_2 , can be treated by the modified Claus process to recover H_2S into valuable elemental sulfur. This process consists of two sections, a highly exothermal thermal part in which a

portion of H_2S is oxidized into SO_2 , and a catalytic reaction part wherein SO_2 reacts with the unburned H_2S to produce elementary sulfur over catalyst bed [1–3]. The principal reactions of the Claus process can be written as follows:

$$H_2 S+ 1.5O_2 \rightarrow SO_2 + H_2O$$
 (R1)

$$2H_2 S + SO_2 \rightarrow 1.5S_2 + 2H_2O$$
 (R2)

Partial oxidation of H_2S (R1), as the fundamental and the most complicated step for the Claus process, has been intensively studied

^{*} Corresponding author at: No. 130, Meilong road, Shanghai, PR China. *E-mail address*: wfch@ecust.edu.cn (F. Wang).

Y. Li et al. Applied Energy 206 (2017) 947–958

Nomenclature Abbreviations		E_c	theoretical recycled heat, kJ/h dimensionless axial distance
		D	
		C_{i}	conversion rate of species i, %
		S_{i}	product selectivity of species i, %
TCD	thermal conductivity detector	LHV_i	lower heating value of species i on mole basis, kJ/mol
FID	flame ionization detector	$C_{\mathtt{P}}$	specific heat capacity on mole basis, J/(K-mol)
FPD	flame photometric detector		
AG	acid gas	Greek symbols	
OC	oxygen concentration, vol.%		
		Φ	equivalence ratio
Latin symbols		η_{C}	heat recycling efficiency of cooling unit, %
-		η	energy efficiency, %
R	reaction	δV	flow rate controlling resolution, L/min
V_{air}	volume flow rate of the air, L/min		
V_{H2S}	volume flow rate of H ₂ S, L/min	subscripts	
V_{N2}	volume flow rate of N ₂ , L/min		
m_{fuel}	mass flow rate of the fuel, kg/min	act	actual condition
m_{air}	mass flow rate of the air, kg/min	sto	stoichiometric condition
E_{σ}	uncertainty of the equivalence ratio, %	max	maximum value
E_{OC}	uncertainty of the oxygen concentration, %		

during the past decades [4–9]. The structure of H₂S/air diffusion flame under the Claus condition ($\Phi = 3$) can be separated into three zones according to Bernez-Cambot et al. [10]. Motivated by the oxidation heat, H2S decomposition occurred at the nozzle vicinity and caused initial H2 and sulfur productions at the first zone. The mixing and combustion was involved in the second zone wherein major oxidation heat was released and SO2 and H2O were intensively formed. The third zone incorporated oxidation of H2 and the Claus reaction (R2). However, the formed H2 within the H2S flame inclines to be maintained according to several references about the H2S-air/O2 rich flame in traditional diffusion manner [11-13]. And for an industrial Claus furnace whose feed contains significant fraction of CO2, the reactivity of CO2 can be stimulated by presence of reductive radicals, and probably gives rise to the formation of unwanted by-products such as COS and CS₂ [14-18]. And this process is anticipated to be enhanced under O₂ enrichment combustion condition.

O2 enrichment (or O2 enhanced) combustion, in which combustion occurs in an oxygen-enriched atmosphere, is seen as one of the most promising technology dealing with CO2 capture, thermal efficiency improvement and pollutants emissions reduction, etc. [19]. This technology has been applied to the Claus process primarily for furnace temperature increase and contaminants destruction, e.g., mercaptans, benzene, toluene and xylene [20]. These hydrocarbons are deemed to be negative for the performance of catalysts by causing carbon deposition, pore blocking and poisoning in catalyst bed [21]. ZareNezhad et al. evaluated the temperature increasing effect of oxygen enriched air on the H₂S-air flame by equilibrium calculation [22]. It was shown that each 10% increase in equivalent OC would induce a flame temperature increase of 25-50 K. This enables a Claus furnace to process extremely lean AG under specific cases. Meanwhile chemical reactions in a flame will be definitely influenced by the substantially increased temperature, concentrated reactants and different heat transfer environment.

Experimental studies on H_2S doped flame under O_2 enriched condition have been performed in laboratory scale facilities [23,24]. Selim et al. has investigated the role of CO_2 on the H_2S oxidation adopting pure O_2 as oxidant in a vertical combustion reactor. They found the addition of CO_2 into a H_2S-O_2 flame, though slightly decreased the temperature of combustion area, could increase downstream temperature [9]. They concluded the effect of CO_2 on flame temperature was caused by its oxidizing medium role of CO_2 in the reaction pool, probably via CO_2 shown as follows.

$$CO_2 + H \leftrightarrow CO + OH$$
 (R3)

This reaction is deemed to represent CO_2 reactivity during combustion, which has been highlighted in many previous studies regarding oxy-fuel combustion [25–28]. Glarborg et al. investigated the influence of high concentration of CO_2 in oxy-fuel combustion of methane with tube furnace experiment and kinetic simulation [25]. CO_2 would compete with O_2 for atomic H and gave rise to CO production via CO0, which could be expected to occur strongly at near-burner region for a non-premixed flame. Lee et al. summarized that the direct chemical impacts of CO_2 for combustion were its breakdown by third-body collision and thermal dissociation, and enriched CO_2 made the radiative heat loss essentially important in the flame [29]. Watanabe et al. observed the promotion role of CO_2 during CO_3 0 oxidation since CO_3 1 reactivity reduced the H/OH ratio by converting H into CO3 in general, reactivity of CO_3 2 cannot be neglected during combustion, especially in an CO_3 2 enriched flame.

Much of the previous interest of CO2 furnace chemistry has evidently stated the relationship between CO₂ and COS and CS₂ [30]. Karan et al. discussed COS formation pathways from homogeneous gasphase reactions in H₂S-CO₂ and H₂S-CO systems [30]. They concluded that CO, and not CO2, was the direct source of COS formation dominantly via CO + $H_2S \leftrightarrow COS + H_2$ and CO + $0.5S_2 \leftrightarrow COS$. This viewpoint was supported by the mechanism study on CO and COS formation in the Claus furnace from Clark et al. [17]. Abián et al. conducted extensive studies about the oxidation of COS and ${\rm CS}_2$ and emphasized the role of CS radical in the generation CS2, chiefly via reacting with sulfur species such as S, S2 or SH [15]. COS and CS2, which are dominantly formed in the Claus furnace, often cause the activity degradation of catalyst and contribute to 30-50% sulfur pollutants in the exhaust gas [31]. Thus investigating the formation of COS and CS2 during AG combustion is of fundamental importance in increasing sulfur recovery and reducing sulfur oxides emission. However, all of the mentioned studies examined formation of COS and CS2 under plug flow and isothermal conditions, which were quite different from the practical reaction condition in the Claus furnace wherein AG was normally oxidized via the non-premixed flame. To fill this gap, we aim to study the non-premixed AG flame and examine the function of major reactants, H₂S and CO₂ in producing pollutants, COS and CS₂ under O₂

One of the motivations for the current study is the obvious advantage of applying O_2 enrichment combustion technology to sulfur recovery plants in increasing energy efficiency and processing capacity. However, it remains unclear the transformation from CO_2 into CO_3 and CO_4 during a non-premixed AG flame, though the high reactivity of CO_2

Download English Version:

https://daneshyari.com/en/article/4915732

Download Persian Version:

https://daneshyari.com/article/4915732

<u>Daneshyari.com</u>