
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Energy prediction using spatiotemporal pattern networks

Zhanhong Jianga, Chao Liua, Adedotun Akintayoa, Gregor P. Henzeb,c, Soumik Sarkara,⁎

a Department of Mechanical Engineering, 2025 Black Engineering, Iowa State University, Ames, IA 50011, USA
b Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA
c National Renewable Energy Laboratory, Golden, CO 80401, USA

H I G H L I G H T S

• Novel data-driven spatiotemporal pattern network (STPN) to predict energy production/consumption.

• xD-Markov machine learnt to capture causal dependencies between dynamic sub-systems.

• Validated by wind turbine power prediction and non-intrusive load monitoring (NILM).

• STPN captures salient spatiotemporal features and achieves high-accuracy prediction.

• STPN and STPN plus convex programming outperform state-of-the-art techniques in NILM.
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A B S T R A C T

This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for
energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN fra-
mework is used to capture not only the individual system characteristics but also the pair-wise causal de-
pendencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is
presented and an energy prediction approach is subsequently proposed based on the STPN framework. To va-
lidate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply
side energy) using the Western Wind Integration data set generated by the National Renewable Energy
Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy
disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring tem-
poral features. In the energy disaggregation context, convex programming techniques beyond the STPN fra-
mework are developed and applied to achieve improved disaggregation performance.

1. Introduction

Energy prediction problems are essential for operating, monitoring,
and optimizing (in terms of efficiency and cost) diverse energy systems,
from the supply side (e.g., wind energy, solar energy, power systems,
storage) to the demand side (e.g., load monitoring, usage of electric
vehicles, building energy management). Numerous studies are being
carried out in terms of predicting energy generation/consumption using
time-series data [1–6]. For instance, Kalman filtering, wavelet packet
transforms, and least squares support vector machines are used to
predict wind power performance [4,5], while an analog ensemble
method is applied to forecast solar power [3]. Liu et al. [2] predicts
remaining state of charge of electric vehicle batteries based on pre-
dictive control theory. Hybrid genetic algorithms and Monte Carlo si-
mulation approaches are applied to predict energy generation and

consumption in net-zero energy buildings [6]. For modern energy sys-
tems, a large number of subsystems is usually involved, for example,
hundreds of wind turbines are closely collocated in a wind farm where
the wind resource is similar and the conditions of each are analogous in
terms of the power transmission to the power system. As a result, there
is a relationship among the wind turbine outputs, and the character-
istics of their spatial interactions can be potentially applied for pre-
diction [7] and design optimization. The prediction approaches dis-
cussed above can be viewed as methods of exploring temporal
relationships. Spatial and temporal relationship widely exists in energy
systems [8–11], yet spatiotemporal features are less commonly lever-
aged for energy prediction problems. The exploration of such spatio-
temporal features has been shown to be efficient in wind speed fore-
casting problems [12,10,13].

To facilitate energy prediction for systems with both spatial and
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temporal characteristics, probabilistic graphical models (PGM) may be
employed as the spatiotemporal interactions are naturally suited for
graph representation and can be evaluated by the associated prob-
abilities. PGM encompasses a variety of models described by condi-
tional dependence structures, so-called graphs, including Bayesian
networks and undirected/directed Markov networks, and can be used to
deal with dynamical systems and relational data [14]. Bayesian net-
works are a type of PGM that capture causal relationships using di-
rected edges [14], where the overall joint probability distribution of the
network nodes (variables) is computed as a product of the conditional
distributions (factors) defined by the nodes in the network. However,
prediction problems are not straightforward for Bayesian networks, as
they only encode node-based conditional probabilities, and the ap-
proximation of the joint distribution using node-based structures is
often intractable [15]. This is because a certain directed acyclic gra-
phical structure may not allow for easy and exact computation of cer-
tain probabilities related to inference questions.

Markov models, as a class of statistical models, have been widely
applied to different domains, e.g., natural language processing and
speech recognition [16]. These models are shown to be efficient in
identifying the probabilistic dependencies among random variables in
both a directed and undirected manner. Hidden Markov Models
(HMMs) have been particularly successful for learning temporal dy-
namics of an underlying process [17]. Several modifications for HMMs
have been proposed, such as integrated HMM (IHMM) [18] which in-
tegrates several parameters into three hyper-parameters to model
countably infinite hidden state sequences. Integrated hierarchical HMM
(IHHMM) [19] extends HMMs to an infinite number of hierarchical
levels, and [20] applied a forward-backward algorithm to reduce model
complexity through the order of operations. However, Markov Models
with hidden states usually rely on iterative learning algorithms that
may be computationally expensive. To alleviate such issues, symbolic
dynamic filtering (SDF) was proposed [21,22] based on the concepts of
symbolic dynamics and probabilistic finite state automata (PFSA).
Several improvements related to coarse graining of continuous vari-
ables [23], state splitting and merging techniques for PFSA [24], effi-
cient inference algorithms [25], and hierarchical model learning [26]
have been proposed over the last decade within the SDF framework.
SDF has been shown to be extremely efficient for anomaly detection
and fault diagnostics of various complex systems, such as gas turbine
engines [27], shipboard auxiliary systems [28], nuclear power plants
[29], coal gasification systems [30] and bridge monitoring processes
[31].

For the purpose of addressing prediction problems in energy sys-
tems, this work presents a new data-driven framework (namely spa-
tiotemporal pattern networks, or STPN) to leverage the spatiotemporal
interactions of energy systems for prediction. Built on SDF, a STPN aims
to capture the spatiotemporal characteristics of complex energy sys-
tems, and implements prediction at both spatial and temporal resolu-
tions. For validation purpose, the proposed approach is evaluated on
two representative case studies. The first is taken from the energy
supply side, wind power prediction in a large-scale wind farm. The
second case study is from the energy demand side, energy disaggrega-
tion (also as non-intrusive load monitoring (NILM), a well-established
problem that involves disaggregating the total electrical energy con-
sumption of a building into its constituent load components without the
necessity for extensive metering installations on individual household
or appliances [32–34]).

The main reason for choosing both an energy production system and
the non-intrusive load monitoring problem on the demand side, is to
demonstrate that our proposed method is extremely effective on both
sides of the energy meter. Note that as penetration of renewable energy
systems increases, prediction accuracy becomes ever more important.
This is because without accurate prediction of renewable energy pro-
duction, it is difficult to control the power distribution, pricing and
scheduling of other energy sources. We need insight into the electric

load breakdown as well, in order to perform effective demand response
and load shaping for peak power reduction. Furthermore, if inexpensive
energy disaggregation approaches are widely deployed, we will obtain
actionable spatiotemporal information on the types of load components
that could respond to local overproduction of renewable energy such as
wind power.

Contributions: We propose a novel probabilistic graphical mod-
eling framework that can capture causal dependencies (in the sense of
Granger causality) among different sub-systems in a large distributed
system. The main contribution is that we demonstrate that the proposed
data-driven modeling scheme can efficiently learn spatiotemporal
characteristics of a distributed energy system in a scalable and com-
putationally efficient manner. The modeling scheme can enable high-
accuracy prediction of energy production (for a distributed generation
system such as wind farm) and energy consumption (for a complex
combination of electrical energy end uses in a building). For wind
turbine power prediction, the spatiotemporal characteristics between
different wind turbines are identified, while for home energy dis-
aggregation the complex coupled temporal features are revealed. A
STPN-based convex programming method is presented in this work in
order to improve energy prediction and disaggregation performance.
We also compare the performance of our proposed algorithm with other
competitive and state-of-the-art data-driven modeling techniques,
which clearly demonstrates the significant improvement in accuracy.
While energy prediction is critical, the data-driven modeling strategy
also opens up many other applications such as performance monitoring,
fault diagnostics, control, and optimization in many large energy sys-
tems that are difficult to model using traditional physics-based princi-
ples.

The remaining sections are outlined as follows. In Section 2, the
necessary background of SDF is presented as well as the concepts of a D-
Markov machine. The prediction approach based on STPN is given in
Section 3, and two typical case studies, i.e., supply side (wind turbines)
and demand side (NILM), for validating the proposed framework are
presented in Sections 4 and 5, respectively. In Section 6, conclusive
remarks and future research directions beyond the existing results are
offered.

2. Symbolic dynamical filtering and D-Markov machines

This section gives an essential background on symbolic dynamical
filtering necessary to characterize the proposed prediction method. We
refer interested readers to [23] for more details. SDF is built upon the
relevant concepts of discrete dynamical systems in which discretization
and symbolization are critical steps to convert observed continuous
data into discrete symbol sequences. Therefore, dynamical systems can
be studied in deterministic or probabilistic settings in terms of symbolic
space by using language-theoretic approaches, e.g., shift-maps and
sliding block codes. The simplest approaches for partitioning are the
uniform partitioning and maximum entropy, where these two methods
were mainly applied to simple dynamical systems with data of less
variance. The state-of-the-art partitioning or discretization approaches
include symbolic false nearest neighbor partitioning (SFNNP) [35],
wavelet transform [23], and Hilbert-transform-based analytic signal
space partitioning (ASSP) [36]. Recently, a supervised partitioning
scheme, i.e., maximally bijective discretization (MBD) [23] has been
proposed for modeling and analyzing complex dynamical systems.
Unlike the other methods, MBD is able to maximally preserve the input-
output relationship originating from the continuous domain after dis-
cretization in dynamical systems.

After discretization of time-series data in the continuous domain,
symbolization is conducted subsequently to establish the D-Markov
machines. For SDF, a critical assumption is that we can approximate
any symbol sequence generated by time series data as a Markov chain
of order D (which is a positive integer). Therefore, such a Markov chain
is called D-Markov machine, which is used to establish the model for
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