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h i g h l i g h t s

� A method for dividing driving cycles into segments is proposed.
� The near-optimal reference SOC trajectory is designed.
� The linear weight PSO is adopted to optimize the EFs in each segments.
� A novel adaptive real-time optimal energy management strategy is realized.
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a b s t r a c t

Plug-in hybrid electric vehicle (PHEV) is one of the most promising products to solve the problem about
air pollution and energy crisis. Considering the characteristics of urban bus route, maybe a fixed-
control-parameter control strategy for PHEV cannot perfectly match the complicated variation of driving
conditions, and as a result the ideal vehicle fuel economy would not be obtained. Therefore, it is of great
significance to develop an adaptive real-time optimal energy management strategy for PHEV by taking
the segment characteristics of driving cycles into consideration. In this study, a novel energy manage-
ment strategy for Plug-in hybrid electric bus (PHEB) is proposed, which optimizes the equivalent factor
(EF) of each segment in the driving cycle. The proposed strategy includes an offline part and an online
part. In the offline part, the driving cycles are divided into segments according to the actual positions
of bus stops, the EF of each segment is optimized by linear weight particle swarm optimization algorithm
with different initial states of charge (SOC). The optimization results of EF are then converted into a
2-dimensional look up table, which can be used to make real-time adjustments to online control strategy.
In the online part, the optimal instantaneous energy distribution is obtained in this hybrid powertrain.
Finally, the proposed strategy is verified with simulation and hardware in the loop tests, and three kinds
of commonly used control strategies are adopted for comparison. Results show when the initial SOC is
90%, the fuel economy with the proposed strategy can be improved by 15.93% compared with that of
baseline strategy, and when the initial SOC is 60%, this value is 16.02%. The proposed strategy may pro-
vide theoretical support for control optimization of PHEV.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the development of new energy vehicle has
made a great contribution to reducing energy consumption and
pollutant emission of automobiles [1–3]. Plug-in hybrid electric
vehicle (PHEV) is one of the most promising products in this field.
In PHEV, fuel economy can be improved by controlling the energy

flow between internal combustion engine and electric machine
connected with a set of high-voltage batteries [4]. The maximum
energy conversion efficiency in hybrid powertrain can be achieved
if the battery is depleted to its minimum allowable charge at the
end of its trip [5]. However, the complicated and transient driving
cycles of city bus affect the reasonable torque distribution in PHEV,
resulting in lower fuel economy of the vehicle. Accordingly, design-
ing an efficient energy management strategy for PHEV running in
complex driving cycles has important theoretical and practical sig-
nificance [6].
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The energy management strategy (EMS) of PHEV in accordance
with its implementation can be divided into two categories: rule-
based EMS and optimization-based EMS. The former performs
shorter computing time and more feasible application, and the set-
ting of rule base threshold can be obtained through practical
engineering experience, engine optimal working point reference
and offline optimization strategy extraction [7]. The rule-based
strategies are subdivided into deterministic rule-based and fuzzy
rule-based methods. For example, authors proposed a classical
rule-based energy management strategy for plug-in hybrid electric
vehicle, which exhibits good reliability and stability in test driving
cycles [8]. Li et al. proposed an optimal fuzzy power control strat-
egy of fuel battery hybrid vehicles, simulation result shows that it
performs well in fuel economy and overall system efficiency [9].
Denis et al. proposed a fuzzy-based blended energy management
strategy focus on driving conditions of plug-in hybrid electric vehi-
cle, and the efficiency of the proposed strategy is demonstrated
through simulations [10]. Although rule-based EMS is easy to
design, its thresholds and rule base need be determined by con-
ducting a large number of experiments or experience calibrations.
Those with fixed thresholds cannot guarantee a better fuel econ-
omy, and sometimes the fuel economy may get worse. Regarding

the optimization-based EMS, which can help PHEV to obtain a bet-
ter fuel economy by optimizing the energy flows between fuel and
electricity in the hybrid powertrain, has been the most attractive
one among all current EMSs. Considering the difference of opti-
mization form, EMS can be divided into instantaneous optimiza-
tion EMS, local optimization EMS, approximate optimization EMS
and global optimization EMS. In the global optimization EMS, In
order to get the theoretical global optimal fuel economy, determin-
istic dynamic programming (DDP) algorithm-energy management
strategy was designed under a test driving cycle, which achieved
the global optimal solution for fuel economy based on Bellman’s
principle [11]. The global optimal solution can be found by mini-
mizing the equivalent factor (EF) at each step of the DDP solving
process. DDP’s effectiveness comes at a price, a huge real-time
computing burden [12]. Bases on these, there are impediments to
DDP algorithm’s large-scale application in engineering practice,
which are often realized offline and deployed as benchmarks
[13]. In the local optimization EMS: model predictive control
(MPC) controller enables planning of the power split commands
on a future time horizon. MPC is also known as a moving horizon
control and receding horizon control because it optimizes over a
given time horizon [14]. Due to the vehicle model is nonlinear,

Nomenclature

Tw torque acting on the wheel
gt transmission efficiency
Tb braking torque acting on the wheel
Te engine torque
TEM electric motor torque
iAMT gear ratio of AMT
if gear ratio of final drive
m vehicle mass
g gravity acceleration
f r rolling resistance coefficient
h road angle
CD aerodynamic resistance coefficient
qd air density
d correction coefficient of rotating mass
A frontal areas of bus
v vehicle speed
r wheel radius
_mf transient fuel consumption
xe rotational speed of engine
q density of CNG
be fuel consumption rate
Tmin
EM lower limit of EM torque

Tmax
EM upper limit of EM torque
xmin

EM lower limit of EM speed
xmax

EM upper limit of EM speed
YCNG current price of CNG
Ye current price of electricity
k tð Þ co-state
C integration constant
JP objective function of LinWPSO
ti starting time of a segment
tj ending time of a segment
Hf low heat value of the fuel
SOCn current SOC
rand1 random number [0,1]
rand2 random number [0,1]
k correction factor of current SOC
c1 learning factor
c2 learning factor
pbest individual optimal value

PEM electric motor power
xEM rotational speed of electric motor
gm efficiency of traction motor
gg efficiency of generator
Pb battery power
_SOC change rate of SOC

Voc open circuit of battery
Rb internal resistance of battery
Qb battery capacity
SOCr reference SOC
SOCi initial SOC
n current segment of road
j total number of road segments
f i factor of SOC changing rate on road segment i
D distance from current segment to starting segment
li length of road segment i
�Td
i average demand torque of road segment i

x tð Þ state variable
u tð Þ control variable
Tmin
e lower limit of engine torque

Tmax
e upper limit of engine torque
xmin

e lower limit of engine speed
xmax

e upper limit of engine speed
SOCl lower limit of battery SOC
SOCh upper limit of battery SOC
JE energy consumption during the whole driving cycle
t0 starting time of the driving cycle
tf ending time of the driving cycle
vmax initial weight factor
vmin final weight factor
T current iteration number
Tmax maximum iteration number
s equivalent factor
si initial equivalent factor

vk
i current velocity of particle i at the k generation

vkþ1
i current velocity of particle i at the k + 1 generation

xki current position of particle i at the k generation

xkþ1
i current position of particle i at the k + 1 generation
v weight factor for velocity of particle i
gbest global optimal value

884 C. Yang et al. / Applied Energy 203 (2017) 883–896



Download English Version:

https://daneshyari.com/en/article/4915814

Download Persian Version:

https://daneshyari.com/article/4915814

Daneshyari.com

https://daneshyari.com/en/article/4915814
https://daneshyari.com/article/4915814
https://daneshyari.com

