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H I G H L I G H T S

• Investigation of the impact of data resolution and calendar effects.

• Support vector regression yields a higher accuracy for a day-ahead load forecast.

• The forecast error can be reduced by using coarser forecast granularity.

• Calendar effects added to the model as dummy variables have little predictive power.

• One year of historical data is sufficient to develop a load forecast model.
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A B S T R A C T

Literature is rich in methodologies for “aggregated” load forecasting which has helped electricity network op-
erators and retailers in optimal planning and scheduling. The recent increase in the uptake of distributed gen-
eration and storage systems has generated new demand for “disaggregated” load forecasting for a single-cus-
tomer or even down at an appliance level. Access to high resolution data from smart meters has enabled the
research community to assess conventional load forecasting techniques and develop new forecasting strategies
suitable for demand-side disaggregated loads.

This paper studies how calendar effects, forecasting granularity and the length of the training set affect the
accuracy of a day-ahead load forecast for residential customers. Root mean square error (RMSE) and normalized
RMSE were used as forecast error metrics. Regression trees, neural networks, and support vector regression
yielded similar average RMSE results, but statistical analysis showed that regression trees technique is sig-
nificantly better.

The use of historical load profiles with daily and weekly seasonality, combined with weather data, leaves the
explicit calendar effects a very low predictive power. In the setting studied here, it was shown that forecast errors
can be reduced by using a coarser forecast granularity. It was also found that one year of historical data is
sufficient to develop a load forecast model for residential customers as a further increase in training dataset has a
marginal benefit.

1. Introduction

Electricity demand depends on several factors including weather,
time, and socio-economic constraints [1]. Load forecasting considers
these factors to facilitate the decision-making process of unit commit-
ment, economic dispatch, and power system operation [2]. At low
voltage level, demand forecasting improves optimal load control and
circuit switching [3]. The traditional centralized power generation from

conventional power plants involved little uncertainty. Utilities focused
on the statistical accuracy of a cluster of loads rather than a single
household [4]. This is changing due to the transition to distributed
energy generation from intermittent energy sources, the decentraliza-
tion of the electricity market, and the rising number of demand side
control systems. The scale of management has been moved down to
microgrid level and single households [5]. Around 30% of the global
electricity demand is related to the power consumption in the
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residential sector [6]. Photovoltaic (PV) systems are the most wide-
spread distributed generation technology in the residential sector by
far, reducing the demand reliance on conventional power plants and
providing the peak load shaving [7].

Rooftop PV systems in the residential sector require new operational
strategies to maximize households’ self-sufficiency and minimize the
negative effect of the afternoon PV feed-in spikes on the grid [8]. To
mitigate the adverse effects of load fluctuations and voltage instability,
as well as store excess PV output, the PV system can be combined with
battery storage [9]. The battery is charged when the surplus energy
from PV panels is available. When the battery is full and the local de-
mand is met, the surplus power is fed into the grid. Considering that this
process occurs in multiple households, a power feed-in peak occurs
requiring the grid operator to pursue load balancing procedures. As
there is a growing solar power generation, it is necessary to find a trade-
off between the amount of the solar energy fed into the grid and optimal
PV-battery system operation from the household perspective [8].

Households’ demand changes quickly as appliances for domestic
chores are turned on and off. While the system-wide load forecast takes
advantage of the load smoothing effect from multiple households, at the
individual household level rapid fluctuations cannot be avoided,
making the load prediction more challenging [10]. Until the recent
deployment of smart meters, there was a shortage of high resolution
data from individual households [3]. A rapid increase in distributed
generation and research in demand side management created a need for
disaggregated data with a high sample rate enabling research in
household load forecasting.

The scheduling of batteries is strongly influenced by errors in input
variables [11]. Whether the household PV-battery system management
is carried out locally or in the cloud environment by a third party, load
forecasting has an important role [5]. The forecast accuracy is even
more critical for single stand-alone systems or microgrids, where un-
foreseen, high-frequency irradiance fluctuations can result in severe
voltage fluctuations [12]. A better voltage control can be achieved by
including the battery state of charge in the microgrid operation model
as this allows the battery to absorb some of the forecast error [13].

PV-battery system scheduling for residential customers is optimized
with complex mathematical programming algorithms or relying on
more efficient geometrical methodology. Case studies for PV-battery
system optimization are often based on historical data rather than solar
irradiation and load forecasts [14]. Since household load is less pre-
dictable than the overall system forecast, excluding load forecast errors
from PV-battery management gives a perfect, but unrealizable solution.
This paper examines how various calendar effects, forecast granularity,
and forecasting strategies affect the load forecast accuracy with dif-
ferent techniques. The aim is to select a short-term load forecast model
that should be deployed in the optimization process of household dis-
tributed generation and storage systems, including PV-battery.

2. Progress in household load forecasting

The load of any single residential customer is less predictable than a
more aggregated load [3]. New forecasting approaches, which arise
from the smoothing effect of household load aggregation, have been
proposed. Humeau et al. [15] analyzed the load consumption of 782
households and found that the normalized forecast error decreased with
the growing number of households in the cluster. Gajowniczek et al.
[10] proposed a blind source separation approach for households with a
similar load pattern; an improved forecast was achieved by decom-
posing the original forecasts into a set of independent components and
classifying and eliminating some of the noise [10].

Historical load and weather data are at the heart of load forecast
models. Several studies have focused on developing new or advanced
features in order to improve the forecast model. Beccali et al. [16] in-
troduced the “humidex index” that accounts for heating and cooling
demand due to the thermal discomfort felt by household residents.

Soliman et al. [17] defined “wind chill index” for winter months based
on wind speed and air temperature. Taieb et al. [18] addressed weather
and electricity demand uncertainty by proposing probabilistic forecasts
based on quantile regression. Rodrigues et al. [19], in contrary, avoided
the uncertainty of weather forecast by using only household physical
and demographic data in combination with calendar effects. Sandels
et al. [20] generated realistic household electricity consumption pat-
terns combining behavioral models of residents with their electricity,
hot water and space heating usage. Javed et al. [21] obtained a higher
forecast accuracy when adding socio-economic factors such as the
number of occupants, the age of occupants and the hours of day spent at
home. Tascikaraoglu et al. [22] proposed a spatio-temporal approach
considering the correlation between the energy usage in the target
house and the houses surrounding it. Jain et al. [23] studied the ac-
curacy of a step-ahead forecast in residential buildings examining
multiple spatial levels within a building and various temporal granu-
larities.

It is a common practice to apply multiple forecasting techniques and
compare them against a perfect-forecast model, which is based on ob-
served load values [12]. This benchmark is used to assess the accuracy
of the proposed model. An alternative benchmark is a persistence model
that takes an advantage of the fact that the load remains relatively
constant for a short period. Therefore, it is often difficult to beat a
persistence model in a short-term.

Traditional load forecasting techniques are based on time series or
regression analysis. Time series models such as exponential smoothing
[21], autoregrssive integrated moving average (ARIMA) models [24],
and seasonal ARIMA [22,25], largely rely on correlation between the
load and its past values. Other traditional load forecasting techniques
include statistical methods such as regression trees [26], and multiple
linear regression [5,22]. To tackle the non-linear and highly dynamic
load fluctuations of residential customers, artificial intelligence tech-
niques have become popular in load forecasting [27]. The main tech-
niques include neural networks (NN) [16,19,21] and support vector
machines (SVM) [15,23,27–29]. While artificial intelligence model
tends to provide slightly better forecast [30], this comes at a cost of
longer computational times. The optimal number of layers and neurons
in neural network model has to be determined empirically [25]. A more
accurate solar generation forecast model was achieved by [31], when
combining several forecasting algorithms into a single forecasting
technique. Stephen et al. [32] demonstrated that a forecast ensemble
consisting of neural networks, Gaussian load profile, ARIMA, persistent
and flat forecast models significantly outperforms the forecast model
built on a single forecasting technique for aggregated load forecasting.
Liu et al. [33] proposed a hybrid short-term load forecasting model with
parameter optimization and focused on the model’s implementation in
the microgrid management.

Calendar effects comprise any changes in load consumption related
to calendar periods. The use of calendar effects in load forecasting
captures weekly and seasonal energy consumption patterns [34] and
facilitates the prediction of peak demand [35]. Fewer studies have fo-
cused on the interaction between the residential load and calendar
variables. Various approaches can be found in the implementation of
calendar features into forecasting models. To capture the similarities in
load variation in different time periods, dummy explanatory variables
are used to represent each day of week [29], split weekdays and
weekends or assign variables for different parts of day [5]. Instead of
using dummy variables, the historical data can be split into subsets
according to the same day of week [36] or by certain hours of day. It is
not clear which of two approaches will yield a higher forecast accuracy.
Similarly, seasonal variability (winter-summer) can be addressed
through any of these approaches.

Past studies have built forecasting models using datasets from
60 days [30] to two years [25]. A common approach is to use all
available data or, if the dataset is incomplete, select the longest period
with complete information to build a forecasting model [36]. As the
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