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H I G H L I G H T S

• Two common tests for observing OCV performance of NMC and LFP cells are studied.

• The temperature, age and relaxation time dependency of the OCV-SoC is investigated.

• A parameters and state of charge joint estimation method is presented.

• The proposed joint estimation method is verified in terms of accuracy and robustness.

• The incremental OCV test is recommended to determine the OCV-SoC relationship.
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A B S T R A C T

The open circuit voltage (OCV) is of essential importance for accurate estimation of the state of charge (SoC) in
lithium-ion battery (LiB). The OCV-SoC relationship is typically predetermined by fitting offline OCV data.
Commonly used two OCV tests are compared in few literatures. Moreover, they only focus on the middle SoC
region (i.e., 20% and 90%) of LiNiMnCoO2 (NMC) LiBs, the performances of these OCV tests for other battery
types and entire SoC region are failed to be addressed. In this paper, the impact of two OCV tests on SoC
estimation for NMC and LiFePO4 (LFP) LiBs is investigated at different temperatures and aging stages. A
parameter and SoC joint estimation method is introduced, based on an integrated H∞-UKF method. The accuracy
and reliability of the proposed method are verified by using two different OCV testing data at various ambient
temperatures and aging stages for some commercial NMC and LFP LiBs. The results indicate that the incremental
OCV test method results in more accurate SoC estimation than the low current OCV test method, on both NMC
and LFP LiBs. Furthermore, to reach equilibrium states and achieve desired SoC estimation accuracy, the re-
laxation period in the incremental OCV test method needs to be extended at low temperatures.

1. Introduction

Electric vehicles (EVs) have gained popularity in recent years, for
their inherent environmental benefits of reduced gas emissions. Battery
systems and their management are the most critical technology sup-
porting EV market penetration. Among various battery types, lithium-
ion batteries (LiBs) such as LiNiMnCoO2 (NMC) and LiFePO4 (LFP) LiBs
are widely used in EVs due to their high energy and power densities
[1,2]. To ensure safe, reliable, and sustained operations of battery
systems, a high-performance battery management system (BMS) needs
to be developed to monitor and control the states of batteries [3], in
which the most important one is the SoC [4]. Many approaches have
been proposed for estimating the SoC [5–9]; and most of them are

model-based [10,11]. In model-based SoC estimation, the battery
model typically consists of a linear dynamic state equation and a highly
nonlinear OCV-SoC function in its output equation. The accuracy of
both equations is essential for SoC estimation, but this paper is devoted
to the impact of OCV-SOC functions predetermined by different OCV
tests on SoC estimation accuracy.

Since the SoC cannot be directly measured, it must be estimated or
inferred from measured signals. Compared with the complicated elec-
trochemical models [12,13], equivalent circuit models (ECMs) can re-
present empirical behaviours of battery systems with much fewer
parameters and have been employed in a wide range of applications
[14]. For ECMs, parameter identification of the model is the foundation
of battery SoC estimation. Commonly used methods are the least
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squares (LS) approach [15–17] and recursive LS (RLS) estimation
[1,18–20]. By using the identified parameters in the battery models,
Kalman filters (KFs) and extended KFs (EKFs) are often used to estimate
the SoC of battery [4,21–24]. Furthermore, unscented KFs (UKFs) and
H∞ filters have also been employed to improve the accuracy of SoC
estimation [25–28].

In applying this parameter and state estimation method, the OCV is
an indispensable variable to SoC estimation and which needs to be
estimated accurately [1,10,22,29–31]. The OCV is commonly treated
as a nonlinear function of SoC [32], and the relationship between the
OCV and SoC varies with ambient temperature [24,33,34], aging stages
[33,35] and relaxation time [36,37]. Currently, there are two com-
monly used OCV test methods to determine the relationship between
battery OCV and SoC, the incremental OCV (IO) test [36,38–40] and the
low current OCV (LO) test [10,34,41]. Zheng, et al. [42] firstly studied
the influence of these two OCV test methods on SoC online estimation
of NMC cells at different temperatures. However, there remain several
open issues. First, two sets of static parameters were identified by the LS
method by using DST data at a certain temperature without considering
the influence of real operating conditions and temperatures on them,
which resulted in large SoC error occurs under different dynamic tests
and low temperatures. So, it’s not reasonable to observe the impact of
different OCV tests on SoC online estimation with inaccurate SoC re-
sults. Second, the study only focuses on the SoC region between 10%
and 90%, however, considering the difficulty in obtaining the accurate
SoC initial value in the real application, the two OCV tests should be
compared in entire SoC region. Third, relaxation time affects the OCV-
SoC curve. Using a constant relaxation time for incremental OCV tests
at different temperatures is not reasonable. Fourth, LFP cells are also
commonly used in EVs. Unlike NMC cells, the OCV-SoC curves of LFP
cells typically have a wide flat range of SoC in middle SoC region and
change dramatically in low and high SoC regions. As a result. Therefore,
the performances of different OCV tests for different battery types are
should be further investigated.

The contributions of this paper are as follows: (1) The impact of two
traditional OCV test methods for online SoC estimation considering
different battery types are studied under different ambient tempera-
tures, aging stages, and entire SoC region. (2) An H∞-UKF joint SoC
estimation method is employed to update parameters and states in real-
time. The OCV model only affects the SoC estimation process other than
the parameters identification process. (3) The influence of relaxation
time at low temperature on the incremental OCV test method is in-
vestigated for both NMC and LFP LiBs. A recommendation on extended
relaxation time is given accordingly.

The remainder of this paper is organized as follows: Section 2 in-
troduces the battery specifications and battery model used in this paper.
In Section 3, two OCV-SoC mapping tests are introduced. In addition,
two OCV-SoC mapping results at various temperatures and aging stages
for NMC and LFP LiBs are presented. Then an H∞-UKF joint SoC esti-
mation method is introduced in Section 4. The results and discussions
are presented in Section 5. Finally, Section 6 concludes the paper with
some discussions on potential future directions.

2. Battery model

NMC and LFP LiBs that are commonly used in EVs. The test bench in
[43] is used to carry out the experiments in this study. The basic spe-
cifications of cells are given in Table 1. It should be pointed out that
NMC01 is a fresh cell, whose actual capacity is 28.40 Ah at 25 °C.
NMC04 is an aged cell which has undergone 400 cycle life tests (i.e.,
Hybrid DST-UDDS tests), whose actual capacity has decreased to 25.51
Ah at 25 °C which indicates a capacity loss of 10.2%. Similarly, LFP01 is
a fresh cell, whose actual capacity is 19.84 Ah at 25 °C. and LFP09 is an
aged cell which has undergone 900 cycle life tests (i.e., Hybrid DST-
UDDS tests) with its actual capacity decreased to 17.77 A h at 25 °C
which indicates a capacity loss of 10.5%.

The Thevenin model as shown in Fig. 1 is selected to represent the
NMC and LFP LiBs due to its high estimation accuracy and low com-
plexity. The dynamics of the battery cells can be described by Eqs. (1)
and discretized to Eq. (2).

⎧
⎨
⎩

= −

= − −
×U

U OCV U i R

̇ i
C

U
C Rp

t p o o

po
p p p

(1)

⎧

⎨
⎩

= − + − −

= − −

+ × ×( ) ( )U U R i

U OCV U i R

exp 1 exp( )k
t

C R k
t

C R k

k k k k k

p, 1
Δ

p,
Δ

p o,

t, p, o, o,

k k k kp, p, p, p,

(2)

where io is the current with a positive value for discharge and a nega-
tive value for charge; Ro is the ohmic resistance; Rp and Cp represent the
polarization resistance and polarization capacitance, respectively; Up is
the polarization voltage across Cp while Ut denotes the terminal vol-
tage; tΔ is the sampling interval; Uoc is the battery OCV which can be
expressed by

= + + + + + + + + +OCV c c s c s c s c s c s c s c s c s c s0 1 2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

(3)

= −−s s
η i t

C
Δ

k k
i

1
o

n (4)

where ci (i= 0, 1,… , 9) are the parameters to fit the OCV-SoC

Nomenclature

OCV open circuit voltage
SoC state of charge
NMC LiNiMnCoO2 batteries
LFP LiFePO4 batteries
IO incremental OCV test
LO low-current OCV test
DST dynamic stress test
UDDS Urban Dynamometer Driving Schedule
EV electric vehicle

ECM equivalent circuit model
Ut terminal voltage
Up polarization voltage
io current
Ro ohmic resistance
Rp polarization resistance
Cp polarization capacitance
Cn maximum available capacity
ηi charge or discharge efficiency
Δt sampling interval
s abbreviation of SoC

Table 1
Basic specifications of the battery cells.

Cell Nominal
voltage

Nominal
capacity

Actual maximum
available capacity
(40 °C/25 °C/10 °C)

Lower/upper
cutoff voltage

NMC01 3.7 V 25 A h 28.91 A h/28.40 A h/
26.37 A h

2.5 V/4.2 V

NMC04 3.7 V 25 A h 25.89 A h/25.51 A h/
24.77 A h

2.5 V/4.2 V

LFP01 3.2 V 20 A h 19.79 A h/19.84 A h/
19.71 A h

2.0 V/3.65 V

LFP09 3.2 V 20 A h 17.67 A h/17.77 A h/
17.88 A h

2.0 V/3.65 V
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