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h i g h l i g h t s

� Novel method to characterize input
uncertainties in energy planning
models.

� Application: sensitivity analysis on
national energy planning
optimization model.

� Results: uncertainty ranges for typical
parameters in energy models.

� Results: economic parameters have
the highest impact on energy
strategy.

� Full documentation of data sources
for reproducibility and use in similar
studies.
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a b s t r a c t

Various countries and communities are defining strategic energy plans driven by concerns for climate
change and security of energy supply. Energy models can support this decision-making process. The
long-term planning horizon requires uncertainty to be accounted for. To do this, the uncertainty of input
parameters needs to be quantified. Classical approaches are based on the calculation of probability dis-
tributions for the inputs. In the context of strategic energy planning, this is often limited by the scarce
quantity and quality of available data. To overcome this limitation, we propose an application-driven
method for uncertainty characterization, allowing the definition of ranges of variation for the uncertain
parameters. To obtain a proof of concept, the method is applied to a representative mixed-integer linear
programming national energy planning model in the context of a global sensitivity analysis (GSA) study.
To deal with the large number of inputs, parameters are organized into different categories and uncer-
tainty is characterized for one representative parameter per category. The obtained ranges serve as input
to the GSA, which is performed in two stages to deal with the large problem size. The application of the
method generates uncertainty ranges for typical parameters in energy planning models. Uncertainty
ranges vary significantly for different parameters, from ½�2%;2%� for electricity grid losses to
½�47:3%;89:9%� for the price of imported resources. The GSA results indicate that only few parameters
are influential, that economic parameters (interest rates and price of imported resources) have the high-
est impact, and that it is crucial to avoid an arbitrary a priori exclusion of parameters from the analysis.
Finally, we demonstrate that the obtained uncertainty characterization is relevant by comparing it with
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the assumption of equal levels of uncertainty for all input parameters, which results in a fundamentally
different parameter ranking.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In 2014, fossil fuels accounted for 81.1% of the world primary
energy supply [1]. Combustion of such fuels is the primary source
of anthropogenic greenhouse gas (GHG) emissions [2]. Thus, vari-
ous countries and communities are defining long-term plans to
increase the share of renewables and efficient technologies. Strate-
gic energy plans define investment roadmaps for energy conver-
sion technologies. Due to the lifetime of these technologies, these
plans have a time horizon of 20 to 50 years.

Energy models, often based on optimization [3], can support
strategic energy planning. In particular, mixed-integer linear pro-
gramming (MILP) formulations are commonly used for this pur-
pose, as in [4]. Most long-term energy planning optimization
models, such as the NEMS [5], MARKAL [6], MESSAGE [7] and
META⁄Net [8] models, are in origin deterministic [9]. Therefore,
they rely on long-term forecasts for important parameters.

Koomey et al. [10], analyzing available retrospectives on long-
term energy models, argue that forecasting models are inevitably
inaccurate as they fail to account for pivotal events. Based on the
classification by Hodges and Dewar [11], Craig et al. [12] define
energy forecasting models as ‘‘nonvalidatable”, i.e. likely to yield
low accuracy and low precision. Forecasting models are usually
made to estimate future energy demand and prices. Sohn [13] ana-
lyzes the consumption projections of fossil fuels over a 19 year
time horizon based on a global economic model. Linderoth [14]
assesses the International Energy Agency (IEA)’s errors in estimat-
ing future energy consumption of member countries. Bezdek and
Wendling [15] analyze major US energy forecast errors in the years
1950–2000. O’Neill and Desai [16] evaluate the accuracy of the US
Energy Information Administration (EIA) energy consumption

forecasts in the years 1982–2000. These various studies highlight
relevant errors in energy demand forecasts. Furthermore, Wine-
brake and Savka [17] performing similar analyses found no evi-
dence that energy forecasts for the studied time period were
becoming more accurate over time. The same conclusion can be
drawn from the latest annual retrospective report by the EIA,
which analyzes errors in its own past predictions [18].

Forecasts on energy prices suffer even higher volatility, as
shown by Bezdek and Wendling [15], who find error factors1 as
high as five in long-term oil price forecasts. Oil price fluctuations
remain, to date, extremely difficult to predict [20]. Wiser and Bolin-
ger [21] show errors in the EIA predictions for wellhead US natural
gas (NG) prices up to the year 2003. Siddiqui and Marnay [22]
updated the analysis of Wiser and Bolinger in 2006. In Fig. 1, the
analysis is extended by comparing the yearly EIA Annual Energy
Outlook (AEO) forecasts for the US NG electric power price2 with
the actual prices for the years 1985–2015. Up to the analysis by Sid-
diqui and Marnay [22] forecasts were heavily overestimating fuel
prices. The figure shows that the trend was opposite in the following
years, as predictions failed to capture the increase in NG prices.
Errors range from the maximum overestimation by a factor of 3.32
in 1995, to the maximum underestimation by a factor of 2.95 in
2005. Furthermore, there is no strong evidence that forecasts per-
form better in the short term compared to the long term.

Nomenclature

Acronyms and abbreviations
AEO Annual Energy Outlook
DHN district heating network
DM decision-maker
EE elementary effect
EIA Energy Information Administration
EO expert opinion
EU European Union
FC fuel cell
GHG greenhouse gas
GSA global sensitivity analysis
HH households
HW hot water
I industry
IEA International Energy Agency
MILP mixed-integer linear programming
MPG miles-per-gallon
NG natural gas
O&M operation and maintenance
PDF probability density function
pkm passenger-kilometer
PV photovoltaic
S services

SH space heating
T transportation

List of symbols
a aleatory uncertainty
E expected value
e epistemic uncertainty
e error factor
g efficiency
h parameter
l� sensitivity index of the EE method
R range of variation
R0 nominal value
Y output of interest
Rmin lower bound of the range
Rmax upper bound of the range
R% relative range
R%;min lower bound of the range (in relative values)
R%;max upper bound of the range (in relative values)
S first-order effect sensitivity index
ST total effect sensitivity index
V variance
Y output of interest

1 If ŷðtÞ is the predicted value at time t and yðtÞ is the actual value, the ‘‘error factor”
eðtÞ of a forecast is defined as eðtÞ ¼ ŷðtÞ=yðtÞ if ŷðtÞ P yðtÞ, and eðtÞ ¼ yðtÞ=ŷðtÞ if
ŷðtÞ < yðtÞ.

2 The natural gas price to the electric power sector is taken instead of the wellhead
price, since starting from 2013 the wellhead price of natural gas is no longer reported
by the EIA.
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