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h i g h l i g h t s

� World’s fastest supercomputer used for construction of benchmark datasets.
� Lasso regression and feed forward neural networks are scaled.
� Machine learning instances are evaluated for prediction vs. runtime performance.
� 3 datasets with 7–156 software inputs are used to predict over 3,000,000 outputs.
� Surrogate building energy model of EnergyPlus runs 60� faster.
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a b s t r a c t

EnergyPlus is the U.S. Department of Energy’s flagship whole-building energy simulation engine and pro-
vides extensive simulation capabilities. However, the computational cost of these capabilities has
resulted in annual building simulations that typically requires 2–3 min of wall-clock time to complete.
While EnergyPlus’s overall speed is improving (EnergyPlus 7.0 is 25–40% faster than EnergyPlus 6.0),
the overall computational burden still remains and is the top user complaint. In other engineering
domains, researchers substitute surrogate or approximate models for the computationally expensive
simulations to improve simulation and reduce calibration time. Previous work has successfully demon-
strated small-scale EnergyPlus surrogate models that use 10–16 input variables to estimate a single out-
put variable. This work leverages feed forward neural networks and Lasso regression to construct robust
large-scale EnergyPlus surrogate models based on 3 benchmark datasets that have 7–156 inputs. These
models were able to predict 15-min values for most of the 80–90 simulation outputs deemed most
important by domain experts within 5% (whole building energy within 0.07%) and calculate those results
within 3 s, greatly reducing the required simulation runtime for relatively close results. The techniques
shown here allow any software to be approximated by machine learning in a way that allows one to
quantify the trade-off of accuracy for execution time.
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1. Introduction

1.1. Background of research

A central challenge in building energy efficiency is to realisti-
cally model the energy-related physics of an individual building.
This capability is necessary to reliably project how specific policy
decisions or retrofit packages would help meet national energy tar-
gets or maximize return-on-investment. This challenge is compli-
cated by the fact that individual buildings, unlike cars or
airplanes, are manufactured in the field and vary greatly fromwhat
may be considered a prototypical building. Since most whole-
building simulation engines, such as EnergyPlus, have thousands
of very specific required inputs, most of these engines suffer
greatly from the user expertise, time, and associated costs required
to create an accurate virtual model of a real-world building. More-
over, this manual process of tuning a model to measured data is
neither repeatable nor transferable.

EnergyPlus is currently DOE’s flagship whole-building energy
simulation engine developed with active involvement by many
participating individuals and organizations since 1995, and is
posted open-source on GitHub [2]. EnergyPlus consists of 1.2
million lines of code with the core consisting of 748,731 lines of
C++ code. It uses a more extensible, modular architecture than
DOE-2, the previous and still widely used simulation program, to
perform the energy analysis and thermal load analysis for a
building. The computational costs of these capabilities has resulted
in annual building simulations that, depending on the complexity
of the building information, often requires 5+ minutes
(10�–100� slower than DOE-2 [3]) of wall-clock time to complete.
Simulation runtime of this program is practically important as it is
used internationally to help create new buildings that are energy
efficient, define optimal retrofit of existing buildings, helps define
building codes, and is increasingly used by utilities in energy effi-
ciency and demand side management programs.

Reducing the runtime of EnergyPlus is the top priority of the
development team with EnergyPlus 7.0 being 25–40% faster than
EnergyPlus 6.0 [4]. But even with a 40% reduction in runtime, man-
ually tuning EnergyPlus building models to align with utility data
so that one creates a legally-useful software model of a building
is still a slow and tedious process. For example, an engineer man-
ually tuning a simulation is not likely to wait the 3–7 min required
to run an EnergyPlus simulation before proceeding to the next tun-
ing step; likewise, the Autotune methodology [5] runs 1024 simu-
lations, which at only 3 min per simulation would require over
2 days. One solution is to construct surrogates to reduce the overall
computational burden. Surrogates, which are generally statistically
generated models, are built to provide rapid approximations of the
original model, and require less computational resources [6].

In addition to the significant computational load issue, another
main concern is the accuracy of the simulation engines for realisti-
cally modeling a virtual building such that matches a real-world
building. A 2008 study [7] found 190 Home Energy Saver, REM/
Rate, and SIMPLE residential simulation models had 25.1–96.6%
error compared to actual monthly electrical energy usage. Another
2012 study [8] found that 859 residential models across Home
Energy Saver, REM/Rate, and SIMPLE simulation engines had a
mean absolute percent difference of 24% from actual monthly elec-
trical energy usage and 24–37% from actual natural gas use for a
sample of 500 houses. It should be noted that all of these studies
use comparisons to monthly utility bill data; the challenge of accu-
rately matching hourly or 15-min data for dozens of submetered
data channels is significantly more difficult.

The challenge for simulation accuracy can be reduced to two
primary issues: (1) a gap between the as-modeled and as-built

structure, and (2) limitations of the modeling engine’s capabilities.
Gaps between as-modeled and as-built structures have many
sources, but ultimately the fault lies in inaccurate input files rather
than simulation engine itself. For example, infiltration, the rate at
which air and the energy in it flows through the building envelope
is not currently able to be cheaply tested despite its importance for
energy efficiency. Blower-door tests can determine infiltration rate
at a given pressure (usu. 50 Pascals) but is a 1-time measurement
that, in reality, experiences significant variances as a function of
temperature, wind speed, and wind direction. A second issue is
the schedule for building usage, which includes number of occu-
pants, times of occupancy, heating, ventilation and air-
conditioning (HVAC) set-points, operations schedule, and other
factors. For many of these, cost-effective sensors simply do not
exist or are not typically deployed in a building. In many cases,
occupancy schedules and relatively static set-point temperatures
are estimated and then used later to ‘‘tune-up” a simulation to
match whole-building data without regard to the accuracy of the
actual HVAC thermostat set-points.

1.2. Literature review

Statistical energy models have been widely used for energy pre-
diction [9,10], and energy optimization [11,12]. Building energy
models calibration is critical in bringing simulated energy use clo-
ser to the actual consumption [13]. Researchers have shown an
increasing interest in using various statistical tools for building
energy models calibration [14–22]. Though many statistical energy
models have been proposed for building energy analysis, they can
be divided into two categories: data-driven models when detailed
engineering energy models are available, and surrogate model-
driven when only computationally cheap models are provided.
There have also been attempts to combine data from both field
measurement and computer simulations for calibration of building
energy simulation models [16]. In contrast to simple linear regres-
sion, Gaussian process (GP) models [15] are used to capture the
features of complex nonlinear and multivariable interactions of
building energy behavior. Correlation analysis and hierarchical
clustering has been utilized [19] to determine and choose informa-
tive energy data. The Bayesian technique becomes popular in this
area since it is capable of parameter estimation even when there
are missing energy data which are considered as uninformative
output data. Bayesian technique based model can be used for mul-
tiple purposes, e.g. retrofit analysis, model-based optimal controls
and energy diagnostics [23]. Provided a case without complete or a
sufficiently large dataset, bootstrap is a powerful statistical tool to
assess the accuracy of an estimator by random sampling with
replacement from an original dataset [18].

Uncertainties and sensitivity analysis in building energy simu-
lation has been investigated [24–29]. Uncertainty analysis (UA)
takes into account uncertainties due to inherent simplifications
of any model and lack of information with regard to input data.
Understanding how uncertainties in energy use predictions from
simulation software is important to achieve more effective energy
efficiency upgrade packages and operational strategies for build-
ings [30]. On the other hand, sensitivity analysis (SA) consists of
modifying model inputs in order to explore the relationship
between input parameter variations and overall energy perfor-
mance of the building [31]. The sensitivity analysis can also iden-
tify the most influential parameters to determine which should
be tuned at high priority [32]. Both UA and SA should be integrated
within calibration methodologies since they play an important role
in building model accuracy [33]. To overcome the difficulties of
getting information from SA using detailed models, macroparame-
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