
A GPU deep learning metaheuristic based model for time series
forecasting

Igor M. Coelho a,b,⇑, Vitor N. Coelho a,c,*, Eduardo J. da S. Luz d, Luiz S. Ochi c, Frederico G. Guimarães e,
Eyder Rios f

aGrupo da Causa Humana, Ouro Preto, Brazil
bDepartment of Computing, State University of Rio de Janeiro, Rio de Janeiro, Brazil
c Institute of Computing, Universidade Federal Fluminense, Niterói, Brazil
dDepartment of Computing, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
eDepartment of Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
f Institute of Computing, UESPI, Paranaíba, Brazil

h i g h l i g h t s

� A CPU-GPU mechanism is proposed in order to accelerate time series learning.
� Disaggregated household energy demand forecasting is used as case of study.
� Suggestions to embed the proposed low energy GPU based system into smart sensors.
� Parallel forecasting model accuracy evaluation with a metaheuristic training phase.

a r t i c l e i n f o

Article history:
Received 30 September 2016
Received in revised form 2 January 2017
Accepted 3 January 2017
Available online xxxx

Keywords:
Deep learning
Graphics processing unit
Hybrid forecasting model
Smart sensors
Household electricity demand
Big data time-series

a b s t r a c t

As the new generation of smart sensors is evolving towards high sampling acquisitions systems, the
amount of information to be handled by learning algorithms has been increasing. The Graphics
Processing Unit (GPU) architecture provides a greener alternative with low energy consumption for min-
ing big data, bringing the power of thousands of processing cores into a single chip, thus opening a wide
range of possible applications. In this paper (a substantial extension of the short version presented at
REM2016 on April 19–21, Maldives [1]), we design a novel parallel strategy for time series learning, in
which different parts of the time series are evaluated by different threads. The proposed strategy is
inserted inside the core a hybrid metaheuristic model, applied for learning patterns from an important
mini/microgrid forecasting problem, the household electricity demand forecasting. The future smart
cities will surely rely on distributed energy generation, in which citizens should be aware about how
to manage and control their own resources. In this sense, energy disaggregation research will be part
of several typical and useful microgrid applications. Computational results show that the proposed
GPU learning strategy is scalable as the number of training rounds increases, emerging as a promising
deep learning tool to be embedded into smart sensors.

� 2017 Published by Elsevier Ltd.

1. Introduction

Sometimes called as the hugest machine ever built, the power
grid has been undergoing several improvements. Researchers and
the industry have been focusing on efficiently integrating Renew-
able Energy Resources (RER) into the grid. The massive insertion

of RER is usually assisted by Artificial Intelligence (AI) based algo-
rithms and models [2], which are being embedded into Smart
Meters (SM) [3]. The proposal described in this current study is a
potential tool to be embedded into SM, being able to forecast use-
ful information from big data disaggregated load time series. These
load time series have the potential of assisting RER integration in
mini/microgrid systems, in which users might employ smart
devices to self-manage their resources and demands.

SM are ‘‘smart” in the sense that the modest use of sensors is
being replaced by devices with plenty of computational abilities.

http://dx.doi.org/10.1016/j.apenergy.2017.01.003
0306-2619/� 2017 Published by Elsevier Ltd.

⇑ Corresponding authors at: Grupo da Causa Humana, Ouro Preto, Brazil.
E-mail addresses: igor.machado@ime.uerj.br (I.M. Coelho), vncoelho@gmail.com

(V.N. Coelho).

Applied Energy xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/locate /apenergy

Please cite this article in press as: Coelho IM et al. A GPU deep learning metaheuristic based model for time series forecasting. Appl Energy (2017), http://
dx.doi.org/10.1016/j.apenergy.2017.01.003

http://dx.doi.org/10.1016/j.apenergy.2017.01.003
mailto:igor.machado@ime.uerj.br
mailto:vncoelho@gmail.com
http://dx.doi.org/10.1016/j.apenergy.2017.01.003
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy
http://dx.doi.org/10.1016/j.apenergy.2017.01.003
http://dx.doi.org/10.1016/j.apenergy.2017.01.003


Usually, these computational abilities are developed based on AI
techniques or specific strategies envisioned by its creator/pro-
grammer. This class of meters are starting to communicate to each
other [4] and to introduce important information to be dealt with
by decision makers. These software based sensors are crucial for
the decision making process over these scenarios filled with
uncertainties.

Among AI techniques found in the literature, deep learning
based ones are in evidence. Deep learning has been applied to sev-
eral classification and regression problems. Part of its success is
due to automatic feature extraction at different levels of abstrac-
tion. Automatic feature extraction promotes the easy re-
utilization of models on different domains without a field-
specialist human intervention. Moreover, deep learning allows
the representation of the nonlinearities, often associated with
complex real-world data. Deep learning models have been used
to achieve state-of-the art results in the field of computer vision
[5,6] and have also been applied to the problem of time series fore-
casting [7–10].

Popular deep learning approaches are based on convolutional
networks [5], restricted boltzman machines (deep belief networks)
[11] and deep autoencoders [12]. However, these methods are
often difficult to interpret and reproduce. According to Hu et al.
[13] several authors treat deep network architectures as a black
box. Another limitation of popular deep learning methods is the
high memory consumption [14]. In contrast, the method proposed
in this work is of easy interpretation and has low memory con-
sumption, which means a competitive advantage over popular
methods of deep learning.

Coelho et al. [15] recently introduced a Hybrid Forecasting
Model (HFM), which calibrates its fuzzy rules using metaheuristic
based procedures. Without applying any filter or pre-processing
energy consumption time series, the HFM model showed to be
competitive with other specialized approaches from the literature
and easily generalized for performing n-steps-ahead forecast.

The extension proposed here (a substantial extension of the
short version presented at REM2016 on April 19–21, Maldives
[1]) explores the learning capabilities of the HFM tool, in which
feature extraction is done by Neighborhood Structures (NS).
Fig. 1 details a generalized version of how the proposed model
works. In this current work, only layer 2 is considered, in which
the special operator returns the average values of all active func-
tions, namely ‘‘activations”. NS are used for calibrating each
parameter of each activation function: lag input for the backshift
operator, rule position and application weight. Furthermore, the
metaheuristic calibration algorithm is able to regulate the size of
the layer, adding or removing functions.

Motivated by the new class of big data time series, which are
reality in several areas (such as in the energy industry, biology,
neuroscience, image processing, among others), we decide to
enhance the HFMmodel with a new parallel forecasting evaluation
strategy. In particular, in this current work, Graphics Processing
Unit (GPU) were designed to be used for forecasting different parts
of a microgrid load time series. The use of GPU based architectures
can provide a greener alternative with low energy consumption for
mining information from such huge datasets [16]. Each GPU pro-
vides thousands of processing cores with much faster arithmetic
operations than a classic Central Processing Unit (CPU). In a nut-
shell, we aim at generating ensemble GPU threads learning pro-
cess, which provide independent forecasts, optimized in order to
reduce a given statistical quality measure. GPU seems to fit the
scope of the HFM, since the model can be implemented and
adapted to GPU computing, particularly because the method uses
metaheuristics algorithms and was implemented in the core of
the OptFrame [17]. The automatic parameters calibration process
of the HFM also matches big data time-series requirements, mainly

due to its metaheuristic based learning phase. For this purpose, NS
plays a vital role in calibrating the model and finding more efficient
solutions. Associated with the power and flexibility of the meta-
heuristics, the absence of parameters tuning simplify the applica-
tion of the proposed framework to different times series, in
particular, when n-steps-ahead forecasting is required.

This paper considers a mini/microgrid forecasting problem as
case of study, the Disaggregated Household Electricity Demand
Forecasting. Researchers had begun to publicly release their data
sets, such as the Reference Energy Disaggregation Dataset (REDD)
[18], which provides low-frequency power measurements (3–4 s
intervals) available for 10–25 individually monitored circuits. The
household electricity demand forecasting has great potential for
microgrid applications, such as the design of green buildings and
houses [19]. Forecasting different disaggregated time series from
a house opens a wide range of possibilities for efficient RER inte-
gration. Considering that billions of dollars are being spent to
install SM [20], researchers are advocating that appliance level
data can promote numerous benefits.

In the remaining of this paper we introduce the GPU architec-
ture in detail (Section 2) and the GPU disaggregated forecasting
process (Section 3). The computational results and the analyzed
parameters are presented in Section 4 and, finally, Section 5 draws
some final considerations.

2. GPU architecture

The GPU was originally designed for graphic applications (thus
receiving the name of a Graphics Processing Unit) such that any
non-graphic algorithm designed for GPU had to be written in terms
of graphics APIs such as OpenGL. This allowed the development of
scalable applications for computationally expensive problems,
such as collision simulations in physics [21]. The GPU program-
ming model evolved towards the modern General Purpose GPU
(GPGPU), with more user-friendly and mature tools for application
development such as CUDA, a proprietary C++ language extension
from NVIDIA, one of the main GPU manufacturers [16].

The GPU architecture is organized as an array of highly threaded
streaming multiprocessors, each one containing a number of pro-
cessing units (cores), besides a multi-level memory structure.
The configuration of GPU hardware depends on the compute capa-
bility, a parameter related to GPU micro-architecture that defines
which hardware features will be available for CUDA development.
A CUDA program consists of one or more phases that are executed
in CPU or GPU. The GPU code is implemented as C++ functions
known as kernels, that are launched by CPU code in a compute grid,
usually formed by a large number of threads that execute the same
kernel aiming at exploiting data parallelism. The threads in a grid
are organized in a two-level hierarchy, where first level is arranged
as a three-dimensional array of blocks, each one containing up to
1,024 threads. In second level, each block is also arranged in a
three-dimensional way. The dimensions of a grid are designed by
the programmer and should observe the limits determined by
the compute capability of the hardware.

After a kernel is launched, each block is assigned to a single
streaming multiprocessors, which executes the threads of a block
in groups called warps. Each warp is processed according to SIMD
(Single Instruction, Multiple Data) model, meaning all threads in a
warp execute same instruction at any time. Global memory
accesses or arithmetic operations performed by some thread also
affects warp execution, forcing all threads in the same warp to wait
until the operation is completed. To hide the latency related to
those operations, GPU schedules another warp to keep SM busy.
This is possible because GPU is able to handle more threads per
SM than cores available.

2 I.M. Coelho et al. / Applied Energy xxx (2017) xxx–xxx

Please cite this article in press as: Coelho IM et al. A GPU deep learning metaheuristic based model for time series forecasting. Appl Energy (2017), http://
dx.doi.org/10.1016/j.apenergy.2017.01.003

http://dx.doi.org/10.1016/j.apenergy.2017.01.003
http://dx.doi.org/10.1016/j.apenergy.2017.01.003


Download English Version:

https://daneshyari.com/en/article/4916029

Download Persian Version:

https://daneshyari.com/article/4916029

Daneshyari.com

https://daneshyari.com/en/article/4916029
https://daneshyari.com/article/4916029
https://daneshyari.com

