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Abstract—This paper is concerned with finite-time L2 leader–
follower consensus of networked Euler–Lagrange systems in the
presence of external disturbances. A distributed finite-time L2
control protocol is proposed by using backstepping design such
that a group of follower agents modeled by Euler–Lagrange
systems can follow a desired leader agent and achieve leader–
follower consensus in finite time. Moreover, the finite-time L2
gain is less than or equal to a prescribed value. A simulation
example of a network composed of seven two-link manipulators
is given to show the effectiveness of the theoretical results.

Index Terms—Euler–Lagrange system, external disturbance,
finite-time leader–follower consensus, L2 stability.

I. INTRODUCTION

OVER the last two decades, consensus of multiagent
systems has received increasing interest due to its wide

applications in formation control of robotic systems [1], [2],
power sharing of microgrids [3], and distributed sensing in
sensor networks [4], [5]. In general, the existing studies on
consensus can be classified into two categories: 1) leaderless
consensus [6]–[8] and 2) leader–follower consensus [9]–[13].
The basic principle of leaderless consensus is to design a
suitable distributed control protocol based on the informa-
tion of the agent itself and its neighbors such that all agents
can reach an agreement on their states/outputs while leader–
follower consensus aims at designing a suitable distributed
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control protocol such that a group of follower agents can track
the leader. We refer readers to the recent surveys [3], [15], [16]
on more results concerning consensus of multiagent
systems.

Motivated by the fact that the dynamical behavior of some
physical systems can be modeled by Euler–Lagrange systems,
such as electrical systems and robotic manipulators, a large
number of researchers pay attention to consensus of networked
Euler–Lagrange systems, which is more challenging as exist-
ing results of linear systems fail to deal with Euler–Lagrange
systems due to the intrinsic nonlinearity. In [17], synchroniza-
tion of networked Euler–Lagrange systems was investigated
based on sampled data. In [18], a distributed adaptive control
was utilized to solve the containment consensus problem of
Euler–Lagrange systems. In the case of the leader–follower
consensus, a command generator known as the leader pro-
vides the desired reference trajectory. All followers are forced
to track the trajectory of the leader. Much effort has been
made in forcing networked Euler–Lagrange systems to track
a desired leader. In [19], the problem of tracking control of
networked Euler–Lagrange systems is studied in a switch-
ing network by utilizing distributed adaptive control. In [20],
sliding mode control was applied to synchronize all follow-
ing Euler–Lagrange systems with a dynamical leader. In [21],
a continuous tracking algorithm with adaptive updating laws
of coupling gains was proposed to solve the synchronization
problem of leader–follower Euler–Lagrange systems. As the
convergence rate is a critical performance index to evaluate
the effectiveness of the control algorithm, how to design an
appropriate control protocol to improve the convergence rate
is important. Finite-time convergence, which ensures consen-
sus to be achieved after a certain period of time, is in great
demand. In comparison with asymptotic consensus protocols
in [17]–[22], finite-time consensus is more practical, yet more
challenging.

Distributed finite-time control algorithms for multiagent
systems were proposed in [23]–[25] based on the finite-time
stability theory. In [23], leader–follower consensus of linear
second-order multiagent systems was considered. An observer-
based control algorithm was designed to track a dynamical
leader in finite time. However, the result is applicable only for
linear systems. Later, a second-order sliding-mode observer
was proposed in [24] for a group of Euler–Lagrange systems
with a dynamical leader. In [25], the problem of the finite-time
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containment consensus of networked Euler–Lagrange systems
with control torque constraints was discussed. On the one
hand, the upper bound of the settling time is still unknown
in [23] and [24]. On the other hand, the effect of disturbances
is not taken in account. In fact, there often exist many different
forms of disturbances in practical environments, such as exter-
nal interferences, stochastic process, and measurement noises.
These factors will result in performance deterioration, such
as instability, slow convergence rates. It is essential to study
the finite-time consensus problem in the presence of exter-
nal disturbances. In [26], a finite-time bounded controller was
designed for delayed conic-type nonlinear systems with mis-
matched disturbances. In [27], discontinuous and continuous
integral sliding mode control protocols were proposed, respec-
tively, to solve finite-time consensus of linear second-order
multiagent systems in the existence of bounded disturbances.
As adaptive control is an effective way to adjust param-
eters [28], in [29], the finite-time consensus problem of
networked Lagrange systems with external disturbances was
solved by using sliding-mode control and adaptive control.
While in [30], an adaptive protocol with distributed updating
laws was proposed by combining the disturbance compensator
technique in a directed network of Euler–Lagrange systems
with bounded external disturbances. Effective methods are
presented in [26], [27], and [29] to eliminate disturbances,
which may suffer the chattering effect. H∞ control pro-
vides us an another option to deal with disturbances. From
the perspective of H∞ performance [31]–[34], backstepping
control has been used to study consensus of networked Euler–
Lagrange systems with external disturbances [35]. However,
these works [33]–[35] restrict their scope with asymptotic
consensus. Thus, how to design a suitable distributed finite-
time control protocol for networked Euler–Lagrange systems
to ensure finite-time leader–follower consensus and attenuate
the effect of disturbance at an acceptable level serves as the
motivation of this paper.

This paper focuses on finite-time L2 leader–follower con-
sensus of networked Euler–Lagrange systems in the presence
of external disturbances. First, a virtual error variable is
defined for every follower based on an auxiliary function
including both discontinuous and continuous distributed con-
trol protocols. Then in a backstepping framework, the original
error systems between the leader and the followers are trans-
ferred into systems related with the virtual error variables.
By defining a performance vector, finite-time L2 consen-
sus is analyzed based on the finite-time stability theory. A
sufficient condition is derived ensuring leader–follower con-
sensus in finite time. In the meanwhile, the finite-time L2
gain of the disturbance attenuation is made less or equal
than a prescribed value. The upper bound of the settling
time is also given. The case without external disturbances is
also discussed. Finally, a network of seven two-link manip-
ulators are given to validate the effectiveness of theoretical
results.

The remainder of this paper is organized as follows: in
Section II, the problem formulation is given and some prelim-
inaries are presented. Section III gives sufficient conditions
for finite-time L2 consensus of networked Euler–Lagrange

systems. Section IV presents a numerical example. The con-
clusion is drawn in Section V.

Throughout this paper, for a given vector
x = [x1, x2, . . . , xn]T and a scalar α > 0,
sig(x)α = [|x1|αsgn(x1), |x2|αsgn(x2), . . . , |xn|αsgn(xn)]T ,
xα = [xα

1 , xα
2 , . . . , xα

n ]T , and sgn(x) =
[sgn(x1), sgn(x2), . . . , sgn(xn)]T , where sgn(·) denotes
the signum function, ‖ · ‖ denotes either the Euclidean vector
norm or its induced matrix two-norm and “⊗” denotes the
Kronecker product.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Graph Theory

Consider a group of leader–follower agents labeled by
1, 2, . . . , n + 1. The agent indexed by n + 1 is known as the
leader and other agents are indexed by 1, 2, . . . , n, which are
referred to as the followers. Graphs are used to describe an
interconnected topology of these n + 1 agents. The directed
graph G = (V, E) is with a set of nodes V = {1, . . . , n + 1}
and edges E ∈ V × V , where (i, j) ∈ E denotes the allowed
information flow from node i to node j. There are no self-
loops in the graph. A path from node j to node i is a
sequence of edges, (j, p1), (p1, p2), . . . , (pl, i) with distinct
nodes pk, k = 1, 2, . . . , l. A graph is connected if there is
a path between any of nodes. A = [aij]n×n is the adjacency
matrix with aij = 1 if (j, i) ∈ E ; otherwise, aij = 0. The set
Ni = {j | (j, i) ∈ E} denotes the neighbors of node i.

The Laplacian matrix L = (lij)n×n associated with an adja-
cency matrix A is defined by lii = ∑n+1

j=1 aij and lij = −aij,
i �= j, i, j = 1, 2, . . . , n + 1. Then L can be written as

L =
[

L1 b
01×n 0

]

, L1 ∈ Rn×n, b ∈ Rn.

Assumption 1: The network of followers is undirected. The
leader has a path to every follower.

B. Problem Statement

Consider a network of multiple Euler–Lagrange systems.
The ith Euler–Lagrange system is described by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi + δi, i = 1, 2, . . . , n

(1)

where qi ∈ R
m is the generalized configuration coordinate;

Mi(qi) ∈ R
m×m is the inertia matrix; Ci(qi, q̇i) ∈ R

m×m is the
Coriolis/centripetal matrix; gi(qi) ∈ R

m is the vector of gravi-
tational torques, τi ∈ R

m is the vector of control input torques;
and δi ∈ R

m is a term that includes an external disturbance. For
typical mechanical systems, the inertia matrix Mi(qi) are sym-
metric positive-definite. It is assumed that Mi(qi) is bounded,
as well as δi for i = 1, 2, . . . , n.

The stationary leader is given by

qn+1 = p (2)

where qn+1 ∈ R
m is the state of the leader with a constant p.

Rewriting (1) in the matrix form yields

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + δ (3)
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