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h i g h l i g h t s

� A gradient multi-objective optimization algorithm is proposed for WFLO problems.
� The problem formulation includes energy, land, cabling and environmental impact.
� Exact gradients are derived for the optimization objectives and constraints.
� NSGA-II is unable to cover the solution space of high-density wind farms.
� The proposed approach outperforms NSGA-II in coverage, spread and efficiency.
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a b s t r a c t

In addressing the multi-criteria Wind Farm Layout Optimization (WFLO) problem, the literature has been
focused on the simple weighted sum approach using single-objective stochastic and evolutionary algo-
rithms, in addition to Pareto formulations using evolutionary algorithms. There is no single solution to
a multi-criteria problem with conflicting objectives; therefore, the Pareto approach is useful to provide
the developer with a non-dominated set of solutions. However, the evolutionary optimization algorithms
tend to be computationally prohibitive, especially when optimizing large-scale wind farms. Additionally,
most of WFLO problems are highly constrained, where many unfeasible zones can exist inside the pro-
posed wind farm boundaries, which in turn complicates the optimization process. To remedy these draw-
backs, we propose a gradient-based approach to Pareto optimization of the multi-criteria WFLO problems
considering land footprint, energy output, electrical infrastructure and environmental impact.
Mathematical functions and their derivatives are developed to represent the four objectives, land-
based constraints, and their gradients. The developed models were validated by devised numerical
experiments; and the optimized layouts using the proposed algorithm were compared to those by the
Non-Dominated Sorting Genetic Algorithm (NSGA-II). Our results provide some evidence regarding the
inability of the NSGA-II to cover the objective space when optimizing wind farms with large power-
densities. In contrast, our proposed approach succeeds in obtaining high-density layouts efficiently.
Furthermore, we demonstrated the superiority of the developed algorithm, in the aspects of coverage,
spread, and computational cost.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Wind Farm Layout Optimization (WFLO) problem was
firstly formulated by discretizing the farm land into square cells
with a node at the center, and defining the decision variables as
binary, using ‘‘1” or ‘‘0” to represent whether a turbine is located

at the node or not, respectively [1,2]. This discrete representation
does not allow exploring the interspaces between the fixed nodes,
which in turn makes the theoretical optimal solution far from true
optimality. Furthermore, increasing number of nodes would
increase the complexity of the NP-hard problem as the number
of possible solutions is 2n, where n is the number of nodes. An
advantage of using this representation is the potential benefit of
fast computation by mathematical programming. However, the
computational cost that is required for optimizing moderate num-
ber of turbines with Mixed Integer Linear Programming (MILP) and
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Quadratic Integer Programming (QIP) would be prohibitive as
reported by Turner et al. [3]. This is why the discrete representa-
tion has been quickly replaced by a continuous representation
for the decision variables which represent the Cartesian coordi-
nates of the turbines, e.g., [4,5]. Thus, by utilizing the continuous
formulation, the whole farm can be explored for the turbines’
placement by using real-coded optimization methods. The two
representations of discrete and continuum domains are illustrated
in Fig. 1.

The first iteration to solve the WFLO was done by Mosseti et al.
[1], where the problem is formulated based on a discrete represen-
tation and solved by using a binary coded genetic algorithm (GA).
Following Mosseti et al.’s pioneering work, the literature has flo-
wed in the direction of using GAs for design optimization of wind
farms, as GAs are generally less likely to be entrapped in a local
optimum because of their design space exploration capability [6].
However, diversity-enhancing mechanismsmay be needed to facil-
itate that [7]. In addition, a local search procedures may be
required after a GA run to truly reach the nearest local optimum.
These implementations add to the prohibitive computational cost
of the basic algorithms. For instance, Gao et al. [8,9] used a
multi-population GA for better exploration of the design space.
Huang [10] used a hybrid approach using GA and a hill-climbing
method to refine the final solution by GA, while Rahbari et al.
[11] proposed a hybrid method of GA and a multilevel technique
to improve the initial population. Another attempt to increase
the quality of obtained solutions was done by Saavedra-Moreno
et al. [12], seeding the initial population of the genetic algorithm
with solutions obtained by a greedy heuristic method. In addition,
Réthoré et al. [13] proposed a multi-fidelity approach combining
GA and sequential linear programming. Furthermore, other
stochastic methods have been implemented, such as Differential
Evolution [5], Particle Swarm Optimization [4,14–18], Simulated
Annealing [19] and Pattern Search [20]. Comprehensive reviews
of previously proposed iterative methods for wind farm optimiza-
tion are available for more details [21–25].

The wind farm optimization literature has overwhelmingly
favored analytical, approximate, closed-form wake models (also
known as ‘‘engineering” models) for optimization purposes.
Although the availability of mathematical equations to model
wake behavior allows to determine exact gradient and Hessian
information, nonlinear mathematical programing methods have
been applied only recently to optimize large-scale wind farm
[26–28]. For instance, Park et al. [26] developed an engineering
wake model and used sequential convex programming for opti-
mization, while Guirguis et al. [27] used the most widely used Jen-

sen’s wake model with Gaussian modulation to make the velocity
deficit function continuous at the wake boundary, thus enabling
the use of an interior-point method (IPM) for optimization. In
[27], we have demonstrated the potential of nonlinear mathemat-
ical programing to solve the WFLO problem more efficiently than
population-based methods such as GAs. While black-box optimiza-
tion methods struggle in solving highly constrained problems effi-
ciently, utilizing exact gradient information with mathematical
programing methods allows to obtain local optimal solutions
quickly, and enables the exploration of the objective space when
combined with well-designed multi-start algorithms [28].

The design process of large-scale wind farms is a challenging
task. Many factors should be considered for optimal micrositing
of wind turbines, such as wake turbulence that reduces power out-
put and increases mechanical loads on wind turbine structures;
installation cost; cost of civil and electrical infrastructures; overall
land-footprint; and environmental concerns. Thus, a multidisci-
plinary design optimization approach is most appropriate for wind
farm design [29].

While most of published works have considered produced
power and turbines’ construction cost (e.g. [1,2,20,30]), a few stud-
ies have taken into account other crucial decisive factors. For
instance, the cost-of-energy models and the influence of landlord
decision making were studied extensively by Chen el. [31–33].
Mora et al. [34] used the net present value as an indication for
the profits, and added the turbines’ selection to the decision
parameters, employing a GA. Gonzalez et al. [35–37] studied the
factors of the electrical and civil infrastructures intensively. Rodri-
gues et al. [21] elaborated more on the cost functions and electrical
infrastructure, proposing a heuristic optimization framework.
However, the used discrete domain representations, and hence
their optimization approaches suffer from previously mentioned
limitations. More details on the proposed multi-objective algo-
rithms to wind farm layouts can be found in a recent review [29].

Another design objective that must be considered is land usage.
Indeed, the power density (i.e., power output per unit of land area),
is one of the main drawbacks of wind power technology, where a
large area is required to produce a desired electric power; add to
that, the cost of the used land and the requirements to construct
the turbines far from inhabitants and wildlife. For example, Tong
et al. [38] studied the trade-off between the wind farm efficiency
and the land footprint using a mixed-discrete particle swarm opti-
mization algorithm in continuous domain, in addition, the shape
and orientation of the land have been considered in [39,40]. Fur-
thermore, the produced noise propagation level has been consid-
ered as in [31,41].
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Fig. 1. Two approaches for WFLO domain representation: (a) Discrete representation where black circle represents turbines located at the center of the cell, and white circles
represent empty cells. The distance d is the restricted space that cannot be explored during the optimization process; (b) Continuous-variable domain representation where,
for example, the turbines could start from ‘x’ positions and make unrestricted moves during the optimization run till ending at ‘o’ positions.
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