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h i g h l i g h t s

� Ensemble weather predictions are introduced in district heating operation.
� A heat load forecast model with dynamic weather-based uncertainties is developed.
� Dynamic forecast uncertainties are applied to the operation of area substations.
� The supply temperature can be lowered while retaining security of supply.
� Area substations with smaller pumping capacity benefit most.
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a b s t r a c t

Ensemble weather predictions are introduced in the operation of district heating systems to create a heat
load forecast with dynamic uncertainties. These provide a new and valuable tool for time-dependent risk
assessment related to e.g. security of supply and the energy markets. As such, it is useful in both the pro-
duction planning and the online operation of a modern district heating system, in particular in light of the
low-temperature operation, integration of renewable energy and close interaction with the electricity
markets. In this paper, a simple autoregressive forecast model with weather prediction input is used
to showcase the new concept. On the study period, its performance is comparable to more complex fore-
cast models. The total uncertainty of the heat load forecast is divided into a constant model uncertainty
plus a time-dependent weather-based uncertainty. The latter varies by as much as a factor of 18 depend-
ing on the ensemble spread. As a consequence, the total forecast uncertainty varies significantly. The fore-
cast model is applied to the operation of three heat exchanger stations. Applying an optimized
temperature control can significantly lower supply temperatures compared to current operation.
Improving the temperature control with dynamic time-dependent weather-based uncertainties can
lower the supply temperature further and reduce heat losses to the ground. The potential benefit of using
dynamic uncertainties is larger for systems with relatively smaller pumping capacities.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

District heating systems exist in most countries in the Northern
Hemisphere but are most widespread in the Nordic countries and
in the former Soviet Union [1]. In the EU, district heating covers
about 13% (2010) of the total domestic heating demand. It has been
estimated that this could potentially be increased to 50% by 2050
[2]. Unlike individual house heating, district heating requires

investment in city-wide distribution networks. As a consequence,
district heating is not competitive in low density areas, but has a
significant potential in many high heat density urban areas, despite
reduced heat demand from future building energy retrofit solu-
tions [3].

District heating can limit the use of high exergy fuels such as oil
and gas for heat-only applications. This is due to its ability to uti-
lize low-quality energy sources such as municipal waste and
excess heat from heavy industrial processes and electricity produc-
tion. Increasing the use of biomass and solar thermal energy in the
district heating sector is useful in the process of decarbonizing the
energy sector. Combined use of large-scale heat pumps and electric
boilers allows district heating systems to utilize electricity
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generated fromwind and solar power for heating in situations with
surplus generation [4,5].

Forecasting of both production and demand is becoming
increasingly important in the energy sector due to: (i) the growing
share of wind and solar energy and (ii) the focus on coupling the
electricity, heating and transportation sectors in smart energy net-
works [6]. In this context, a good forecast can be used to plan the
operation of flexible assets to minimize costs and environmental
impact. The uncertainty of the forecast can be used to quantify
financial risk in the energy market or operational risk related to
security of supply [7]. Forecast uncertainty can be estimated using
the technique of ensemble forecasting. Ensemble forecasting has
previously been used for electricity load forecasting, both in a lin-
ear [8] and in a neural networks context [9]. It has also been
applied to wind [10,11] and solar power forecasting [12] to esti-
mate the forecast uncertainty. In this paper, the technique of
ensemble forecasting is adapted to district heating load forecasting
for the first time. We are also the first to demonstrate how
dynamic forecast uncertainty could be applied to operate existing
heat exchanger stations with increased efficiency while retaining
security of supply.

1.1. Heat load forecast uncertainty

District heating production planning and operation involve
decision making under uncertain conditions. Hence, accurate fore-
casts of daily variations in the heat load are needed in the district
heating sector.

Variations in the heat load are caused by changing weather and
consumer behavior [13], and forecasting district heating demand
or heat load has been studied in a multitude of papers. A number
of commercial tools for this purpose also exist. Within academic
studies, machine learning approaches to top-down forecasting of
district heating demand have gained popularity in recent years.
Multilayered neural networks are used to predict heat load in
[14,15], and to predict cooling load in a district heating and cooling
system in [16]. In [17], the authors compare a number of different
supervised machine learning algorithms and conclude that support
vector regression performs best. Other studies such as [18] take a
more traditional statistical approach. In [18], physical knowledge
is used to limit the model space and statistical analysis is used to
refine the model and estimate the parameters. Stochastic time ser-
ies methods have also been successfully applied to heat load fore-
casting. This includes general transfer function models [19] and

seasonal autoregressive integrated moving average models (SAR-
IMA) [20,21]. The paper [22] demonstrated that decent forecast
performance can be achieved by simple autoregressive methods
with weather input. In [21], a comparison between a number of
linear regression models and a SARIMA model with exogenous
input favors a simple linear regression model using weekly heat
demand patterns. On the building level, [23] presents a heat
demand forecast that is a hybrid model using both physical,
autoregressive integrated moving average models (ARIMA) and
singular value decomposition methods.

While all of these studies benchmark the performance of their
models by some standard measure, not all of them address the
forecast uncertainty directly, e.g. through the use of prediction
intervals. In [20,23], prediction intervals are provided for the fore-
cast models, but these are estimated from the statistical uncer-
tainty on the model parameters only, and they do not take the
unpredictability of the weather input into account. In [21,22], for
instance, a perfect weather forecast is assumed when benchmark-
ing the model. However, weather forecasts are never perfect, and a
heat load forecast model that depends on a weather forecast is
bound to propagate some of the uncertainty in the weather fore-
cast into an uncertainty on the heat load forecast. The authors of
[15] estimate weather-based prediction intervals for one of their
forecast models. These prediction intervals are constant in time
and are estimated by simply adding Gaussian noise with mean 0
and standard deviation 1 to each of the weather variables in a
Monte Carlo simulation.

In this paper, we present a heat load forecast model with pre-
diction intervals that vary in time, due to the time variation in
the uncertainty of an ensemble weather forecast. An ensemble
weather forecast consists of multiple independent forecasts that
ideally cover the full range of possible weather conditions in a
given period. It can be used to estimate the most likely scenario
and quantify the time-dependent uncertainty of the weather vari-
ables. Each ensemble member represents an internally consistent
weather configuration based on a sophisticated meteorological
model which means that cross-correlations between different
weather variables are naturally captured.

A heat load forecast with dynamic prediction intervals is a new
and valuable tool for the district heating sector. Augmented with
cost estimates, it will allow production planners to take calculated
risk in unit commitment situations or when trading on the electric-
ity market. From an operational perspective, knowing the dynamic
uncertainties of a forecast enables operators to knowwhen to push

Nomenclature

dbP uncertainty on the heat demand forecast P̂ [MW]bP forecasted heat load, production or consumption [MW]
L likelihood function
qw density of water [kg/m3]
r standard deviation of forecast errors [MW]
rm standard deviation of model-based errors [MW]
rw
t standard deviation of the ensemble of heat demand

forecasts in time step t [MW]
rtot
t combined standard deviation, based on rw

t and rm in
time step t [MW]

a; b; c; d heat load model parameters
cw specific heat of water [MW h/kg��C]
Isun solar irradiance [W/m2]
k number of model parameters, used when evaluating AIC
P heat load, production or consumption [MW]
Q volume flow rate [m3/h]

Q ref reference volume flow rate for security of supply [m3/h]
Qmax water flow capacity of a heat exchanger station [m3/h]
rh relative humidity [%]
t subscript denoting hourly time steps
Tout outside temperature [�C]
Tret return temperature [�C]
Tsup supply temperature [�C]
Tmin
sup minimum supply temperature as a function of outside

temperature [�C]
vwind wind speed [m/s]
AIC Akaike Information Criterion
MAE mean absolute error [MW]
MAPE mean absolute percentage error [MW]
RMSE root mean square error [MW]
Sc.i superscript denoting Scenario i
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