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h i g h l i g h t s

� An agent-based model of optimized
bioenergy industry infrastructure is
developed.

� The newmodel is applied to emerging
economies for the first time.

� Bioenergy plants should be located
close to bioenergy feedstock source
regions.

� Biomass densification measures are
not economically profitable for the
case region.

� The benefits of smallholder farmers
need to be taken into consideration.
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a b s t r a c t

In the context of combating climate change and maintaining energy security, ambitious bioenergy devel-
opment projects in emerging economies face considerable challenges, for example an overburdened
bioenergy industry infrastructure due to the growing demand for bioenergy products. There are abundant
studies on optimizing the bioenergy industry infrastructure. However, they fail to comprehensively sim-
ulate the interactions among the predominant actors of the infrastructure, especially the bioenergy plant
operators in emerging economies. To fill this research gap, we develop a new dynamic agent-based model
of optimized bioenergy industry infrastructure from the perspective of bioenergy plant operators. We
then apply the model to Jiangsu Province of China to simulate the coordination of two types of bioenergy
plants and project the optimal distribution of these plants and their corresponding transportation net-
works for the year of 2030. The model results suggest locating bioenergy plants closer to bioenergy feed-
stock source regions rather than to bioenergy products consumption sites, an answer to the classical
facility location problem. A welfare analysis based on the extended model indicates that the biomass den-
sification process aiming at mitigating the growing transport volumes incurred by the delivery of bulky
bioenergy feedstock is not economically profitable in our case region. The experiences from this region
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further show that for emerging economies, a successful bioenergy industry infrastructure needs to take
the benefits of smallholder farmers into consideration.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

To curb CO2 emissions and to avert an energy crisis, many coun-
tries have increased their efforts to find feasible alternatives to fos-
sil fuels. Bioenergy has rapidly developed in the last decades. In its
various forms, it can meet diverse energy demands and play a
unique role in promoting rural development. According to the
International Energy Agency (IEA), the global supply of bioenergy
reached 1381 Million tonnes of oil equivalent (Mtoe) in 2013, rank-
ing fourth after traditional fossil fuels – crude oil (4211 Mtoe), coal
(3913 Mtoe) and natural gas (2898 Mtoe) – but leading all renew-
able energy types [1].

While a rapidly growing bioenergy industry may bring social,
economic and environmental benefits, its unprecedented utiliza-
tion scale provides a challenge to the existing infrastructure. Par-
ticularly, bioenergy transportation volumes are likely to exceed
the combined capacity of current agricultural and energy supply
chains, including grain, petroleum, and coal by mid-century [2].
Kang et al. [3] proposed that a successful bioenergy infrastructure
would consist of the following components: (1) a favorable feed-
stock supply chain tailored to local environmental and economic
conditions; (2) a careful choice of bioenergy conversion technolo-
gies; and (3) a cost-effective network for the transportation and
distribution of bioenergy feedstock and products.

As a classical example in operations research, the facility loca-
tion problem has been studied for more than half a century. Ini-
tially emerging in the food industry [4,5], previous work was first
applied to bioenergy research in the 1980s. For the first time, Eng-
lish et al. [6] developed a linear programming model to assess the
economic feasibility of using corn residue in coal-fired power
plants. In recent years, increased computational resources,
improved methods, and better data led to more comprehensive
and integrated assessment models representing different struc-
tures of the bioenergy supply chain. The methods used in these
models can be classified into three types:

(1) Multi-criteria Decision Analysis: For example, Sultana and
Kumar [7] analyzed a set of economic, geographical, techno-
logical and environmental factors for siting biomass-based
facilities to derive a land-suitability model. They applied this
model to the province of Alberta, Canada. Sun et al. [8] used
spatial analysis technology, economic models and scenario
analysis to pick the appropriate development zones for bio-
electricity generation in Fujian Province, China.

(2) Heuristic Approaches: Ayoub et al. [9] combined a genetic
algorithm with data mining techniques to decide the opti-
mal size of storage and conversion facilities for bioelectricity
production from forestry residue in Japan, in which the
transportation costs, CO2 emissions and number of workers
were minimized. Izquierdo et al. [10] developed a variant
of particle swarm optimization, using an evolutionary
stochastic algorithm derived from the social behavior of
organisms such as bird flocking and fish schooling [11], to
find optimal biomass flows from sources to energy produc-
tion plants, which took the mountain community of Val Bor-
mida in Italy as a case study.

(3) Mathematical Programming Approaches: This method is
well developed in the field of bioenergy systems simulation.
Specifically, it can be further divided into four groups: (i)

Linear programming (LP), which consists of a linear objective
function and linear constraints. For instance, Perpiñá et al.
[12] applied the Dijkstra algorithm, which was realized by
the closest facility function of Geographical Information Sys-
tems (GIS), to the Valencuan Community in Spain to identify
the optimal location of bioenergy facilities. Combined with a
biophysical and GIS model, Laporte et al. [13] proposed an LP
economic model to examine the effects of three different
supply chain structures and biomass prices on bioenergy
feedstock supply, which took Ontario, Canada as a case
study. (ii) Integer programming (IP), meaning all decision
variables are restricted to be integers. Höhn et al. [14] com-
bined Kernel Density maps generated on ArcGIS with the p-
median model, an IP model, to determine the spatial distri-
bution and amount of potential bioenergy feedstock for bio-
gas production and optimal locations, sizes and number of
biogas plants in southern Finland. (iii) Mixed integer linear
programming (MILP), in which some decision variables are
integers but the objective function, the rest of decision
variables and all constraints are linear. For example, Leduc
et al. [15] and Petterson et al. [16] developed cost minimiza-
tion models to separately simulate the productions of
lignocellulosic-based methanol via gasification and a variety
of biofuels from forest biomass in Sweden. Zhang et al. [17]
minimized the cost of the entire switchgrass-based bioetha-
nol supply chain in the U.S., while Cambero and Sowlati [18]
considered non-identical social benefits of different new
jobs created by a forest-based biorefinery supply chain in
the interior region of British Columbia, Canada through a
multi-objective MILP model. By contrast, Jonker et al. [19]
were more concerned about the optimal location and scale
of sugarcane and eucalyptus industrial processing plants
for ethanol production. They projected the expansion of bio-
fuel production in the state of Goiás, Brazil between 2012
and 2030. (iv) Non-linear programming (NP), meaning either
the objective or some of the constraints contain non-linear
functions. Kaylen et al. [20] used this approach to analyze
the economic feasibility of producing bioethanol from
lignocellulosic biomass in Missouri State, U.S. Shabani and
Sowlati [21] developed a mixed integer non-linear program-
ming (MINLP) model to optimize the supply chain of a real
biomass-based power plant in Canada by maximizing the
chain’s overall value.

While considerable research has been conducted to develop and
apply optimization models for the analysis of the bioenergy indus-
try infrastructure, there are at least three shortcomings: First,
existing studies are mainly conducted in developed countries,
although emerging economies (such as China, India, Indonesia,
Brazil and the Philippines1) are perceived as important booming
bioenergy markets for the coming years [22–24]. Second, among
the above mentioned optimization models, most are LP, IP or MILP

1 Although there are multiple lists of emerging and developing economies created
by various organizations based on their different interpretations of the term, the
countries named here are all included in the lists of the International Monetary Fund
(IMF), the Financial Times Stock Exchange (FTSE), Morgan Stanley Capital Interna-
tional (MSCI), The Economist, Standard & Poor and Dow Jones (http://www.
economywatch.com/world_economy/emerging-markets). Therefore, they are the
most widely recognized emerging economies.
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