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h i g h l i g h t s

� Deep learning-based methods are developed for building cooling load prediction.
� Accurate predictions on 24-h ahead building cooling load profiles are achieved.
� The potentials of supervised and unsupervised deep learning is investigated.
� Features extracted by unsupervised deep learning can improve model performance.
� Supervised deep learning does not show obvious advantages in model development.
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a b s t r a c t

Short-term building cooling load prediction is the essential foundation for many building energy man-
agement tasks, such as fault detection and diagnosis, demand-side management and control optimiza-
tion. Conventional methods, which heavily rely on physical principles, have limited power in practice
as their performance is subject to many physical assumptions. By contrast, data-driven methods have
gained huge interests due to their flexibility in model development and the rich data available in modern
buildings. The rapid development in data science has provided advanced data analytics to tackle predic-
tion problems in a more convenient, efficient and effective way.
This paper investigates the potential of one of the most promising techniques in advanced data analyt-

ics, i.e., deep learning, in predicting 24-h ahead building cooling load profiles. Deep learning refers to a
collection of machine learning algorithms which are powerful in revealing nonlinear and complex pat-
terns in big data. Deep learning can be used either in a supervised manner to develop prediction models
with given inputs and output (i.e., cooling load), or in an unsupervised manner to extract meaningful fea-
tures from raw data as model inputs. This study exploits the potential of deep learning in both manners,
and compares its performance in cooling load prediction with typical feature extraction methods and
popular prediction techniques in the building field. The results show that deep learning can enhance
the performance of building cooling load prediction, especially when used in an unsupervised manner
for constructing high-level features as model inputs. Using the features extracted by unsupervised deep
learning as inputs for cooling load prediction can evidently enhance the prediction performance. The
findings are enlightening and could bring more flexible and effective solutions for building energy
predictions.

� 2017 Published by Elsevier Ltd.

1. Introduction

The building sector has become the largest energy consumer
worldwide, accounting for 32% of global final energy consumption
and one third of the Green House Gas emissions [1]. Compared to

the transportation and industry sectors, the energy saving poten-
tial in buildings is much more significant and could reach 30–
80% using currently available building technologies [2]. Among
various building services systems, the Heating, Ventilation and
Air-Conditioning (HVAC) system is responsible for the largest pro-
portion of building energy consumption (e.g., around 50% in U.S.)
and has the largest energy saving potential (e.g., 15–30% for
commercial buildings) [3,4]. As a result, the current energy
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conservation measures in building operations mainly focus on the
HVAC system. Reliable prediction of short-term (i.e., with a predic-
tion horizon of shorter than 1-week) cooling load profile is the
essential foundation for many building energy management tasks
[4,5], including optimal control and fault detection and diagnosis
(FDD) strategies [6–8]. Ben-Nakhi and Mahmoud adopted artificial
neural networks to predict next-day cooling load for optimizing
the HVAC thermal energy storage system operation [7]. It was
shown that optimal control strategies can increase the operating
flexibilities while reducing the operating costs. Lu et al. utilized
artificial intelligence for building cooling load predictions with
the aim of optimizing HVAC system operations [8]. Energy-
efficient operations were achieved by optimizing the set points of
chilled water supply temperature, chilled water pump head and
supply air pressure in duct networks. Shan et al. developed a
robust chiller sequencing control strategy relying on building cool-
ing load predictions [9]. The strategy was validated and could
achieve 3% energy saving compared to conventional strategies. Pre-
dicted cooling load has been used either directly or indirectly as an
indicator for FDD. As examples, previous studies have used cooling
load for detecting and diagnosing the low delta-T syndrome in chil-
ling system [10], reducing energy consumption in air-handling
units [5], and detecting abnormal energy use at the building-
level [11]. Building cooling load prediction is also critical to build-
ing demand-side management. A large number of studies have
been carried out to investigate the most cost-effective demand
response measures (e.g., load shifting) considering the interactions
between buildings and smart-grids [6]. An essential assumption of
these studies is that reliable predictions of short-term building
cooling load profiles are available to use.

Existing methods for short-term cooling load prediction can
generally be classified into two types, i.e., physical-model based
methods and data-driven methods. Physical-model based methods
rely on physical principles and detailed information on building
and its systems to characterize building thermal behaviors. The
models developed are usually referred as white-box models.
Admittedly, they can capture the actual building thermal response
to various influential factors, such as outdoor and indoor environ-
ment. However, it requires a large amount of detailed building
information (e.g., information on building envelop and the selec-
tion of building equipment) and the model performance may not
be consistent if assumptions of physical principles are not fulfilled
[12].

The other type of prediction methods, i.e., data-driven methods,
mainly relies on building operational data to discover the relation-
ship between building cooling load and relevant variables (e.g., the
outdoor temperature and relative humidity, and indoor occu-
pancy). The models developed in such a manner are known as
either grey-box or black-box models [13,14]. The main advantage
of data-driven models, especially black-box models, is that the
modeling process is more efficient and flexible. The use of
advanced data analytics, such as machine learning and artificial
intelligence, enables data-driven models to achieve high accuracy
and discover potentially useful yet previously unknown relation-
ships with efficient computation. The performance of data-driven
methods is mainly affected by two factors, i.e., the prediction tech-
niques used for model development and the features used as
model inputs. Previous research showed that the prediction tech-
niques from the field of machine learning and artificial intelligence,
such as support vector regression [15,16] and artificial neural net-
works [17,18], worked very well in building energy prediction.
Various studies have also shown that nonlinear techniques could
achieve more accurate results compared with linear ones, e.g., mul-
tiple linear regression and autoregressive moving average [19,20].
Regarding to the model inputs, previous studies mainly relied on
engineering knowledge or simple statistical methods (e.g.,

correlation coefficient) to select model inputs or develop features
as model inputs. For instance, engineering knowledge tells that
the building cooling load is closely related to the outdoor weather
condition and indoor occupancy. Therefore, outdoor dry-bulb tem-
perature, relative humidity and solar irradiation as well as the
indoor occupancy schedule (e.g., Day of the week, Hour and Minute)
were typically selected as model inputs [21,22]. Some studies also
used historical data as model inputs considering the building ther-
mal capacity [19,23]. Using original historical data, such the out-
door temperature and humidity at previous time steps, as model
inputs is generally not recommended, as it may substantially
increase the number of model inputs, making prediction models
more complicated and computationally expensive. Feature extrac-
tion, which transforms raw data into a compact yet information-
preserving form, can be applied to develop features as model
inputs. Three types of feature extraction methods have been found
in previous studies, i.e., engineering, statistical and structural fea-
ture extraction [22–27]. Engineering features are constructed
based on engineering knowledge and experience, e.g., using the
data at previous one-hour as model inputs [23]. Statistical features
are constructed using summarizing statistics, e.g., minimum, max-
imum and mean values of the measurements over a period of time
[22,24]. Structural features represent the structural or temporal
relationships within the data over a period of time, e.g., the cut-
off lag of autocorrelation function or the dominant frequencies in
the time-series data [25–27].

The data-driven approaches have gained increasing popularity
in the building field, as more and more building operational data
are available in modern Building Automation System (BAS). The
rapid development in big data analytics offers opportunities for
the effective use of big BAS data. One prominent and promising
example is deep learning, which has gained huge success in the
field of pattern recognition [28,29]. Deep learning refers to a collec-
tion of machine learning algorithms which adopts a ‘deep’ model
architecture for knowledge discovery. In other words, the input
data will be transformed in either a linear or a nonlinear manner
multiple times before deriving the output. By contrast, conven-
tional machine learning algorithms are ‘shallow’ and input data
only undergo one or two rounds of transformation. Deep learning
can be used either in a supervised manner for developing a predic-
tion model or in an unsupervised manner for extracting meaning-
ful features from raw data. The former works on two clearly
defined data sets as the input set (denoted as X) and the output
set (denoted as Y), while the latter works on the input data set
(X) alone and aims to extract high-level abstractions of X. Deep
learning has demonstrated its power in various applications, such
as speech recognition and visual object detection [28,29]; however,
it’s potential in building cooling load prediction is still unknown.
To fill this research gap, this study systematically investigates the
potential of deep learning in building cooling load prediction and
detailed comparisons with existing analytics are given.

The paper is organized as follows: Section 2 presents the
research outline and a brief introduction of data analytics used.
Section 3 describes the modeling process using the data retrieved
from an educational building. The performance in terms of predic-
tion accuracy and computation load is compared and discussed in
Section 4. Conclusions are drawn in Section 5.

2. Research methodology

2.1. Research outline

Fig. 1 presents the general research outline. Feature extraction
is firstly carried out to extract meaningful features as model inputs.
Four types of feature extraction methods highlighting the unsuper-
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