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h i g h l i g h t s

� A microgrid is managed by considering dynamic and uncertain nature of the system.
� 2SSP for a day operation is combined with a day-to-day MDP for temporal connection.
� Size of the system component is optimized based on the value function for the MDP.
� A multi-scale wind model is developed for integration of the decision hierarchy.
� The proposed method is examined for a benchmark case study with real wind data.
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a b s t r a c t

Distributed and on-site energy generation and distribution systems employing renewable energy sources
and energy storage devices (referred to as microgrids) have been proposed as a new design approach to
meet our energy needs more reliably and with lower carbon footprint. Management of such a system is a
multi-scale decision-making problem encompassing hourly dispatch, daily unit commitment (UC), and
yearly sizing for which efficient formulations and solution algorithms are lacking thus far. Its dynamic
nature and high uncertainty are additional factors in limiting efficient and reliable operation. In this
study, two-stage stochastic programming (2SSP) for day-ahead UC and dispatch decisions is combined
with a Markov decision process (MDP) evolving at a daily timescale. The one-day operation model is inte-
grated with the MDP by using the value of a state of commitment and battery at the end of a day to
ensure longer term implications of the decisions within the day are considered. In the MDP formulation,
capturing daily evolving exogenous information, the value function is recursively approximated with
sampled observations estimated from the daily 2SSP model. With this value function capturing all future
operating costs, optimal sizing of the wind farm and battery devices is determined based on a surrogate
function optimization. Meanwhile, a multi-scale wind model consistent from seasonal to hourly is devel-
oped for the connection of the decision hierarchy across the scales. The results of the proposed integrated
approach are compared to those of the daily independent 2SSP model through a case study and real wind
data.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

An energy system (referred to as ‘grid’) has to be managed for
stable and efficient generation and distribution. A new concept
has emerged recently, the smart grid, which is an intelligent energy
grid system including a variety of advanced energy supplier/
customer such as renewable energy resources, smart meters, and

electric cars with improved efficiency by integrating with ICT along
the entire energy supply networks. As the infrastructure of grid
becomes more advanced in terms of energy generation, informa-
tion sharing/management, and communication with complex and
fully integrated network, smart management applications and ser-
vices should keep pace with it in order to achieve the objectives
related to supply and demand balance, operation cost reduction,
and utility maximization [1,2]. However, the smart grid manage-
ment in its essence is a stochastic dynamic optimization problem
having a multi-time scale, multi-period decision horizon and high
uncertainty, for which efficient mathematical problem formula-
tions and solution algorithms are lacking thus far.
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One of the most promising new grid paradigms is the microgrid
(MG) [3], which is for providing energy in a small and localized
area with its own distribution grid. A MG has generally multiple
distributed generators including renewable energy sources along

with conventional fuel-based generators, and energy storage
devices to make up for the intermittent nature of the renewable
energy sources. The choice of a suitable generation mix is entirely
site-specific depending on the availability of the various renewable

Nomenclature

Indices/Sets
d index for days
Dm set of days in monthm
g generators
G set of generators
Gs set of slow-start generators
h hours
H set of daily hours
Huc set of unit commitment decision epochs
k energy dispatch sources
K set of energy dispatch sources containing producing

from generators, charging/dis-charging battery, buy-
ing/selling, which is defined by {G, ch, disch, buy, sell}

n iterative numbers for the value function approximation
N the number of iterations for the value function approx-

imation
m months
M set of months
t multi-scale time index which is defined by (m, d, h) (or

just simplified h in the one-day operation model)
Am;h set of the wind model parameters related to the hourly

variation for monthm
Em set of the wind model parameters related to the inter-

day variation for monthm
x intraday wind scenarios
Xa

m;d set of intraday wind scenarios realized in time (m, d)
Xe

m discrete space of daily average wind values for monthm

Parameters
Bmin lower limit of battery state
Bmax upper limit of battery state
C g
U unit start-up cost of generator g

C g
D unit shut-down cost of generator g

C g
S unit setup cost of generator g

Cdisp;k unit dispatch cost of source k
Clost unit penalty cost of lost-demand
Cw
capa unit investment cost for capacity acquisition of wind

plant
Cb
capa unit investment cost for capacity acquisition of battery

emin
m;h lower bound of hourly random noise in the intraday

wind model for monthm
emax
m;h upper bound of hourly random noise in the intraday

wind model for monthm
MT minimum up/down time limitation of fuel-based gener-

ators
Pk
min lower limit of dispatch source k

Pk
max upper limit of dispatch source k

Pw
r rated electrical power in the wind conversion model

Rg
down hourly ramp-up limit of generator g

Rg
up hourly ramp-down limit of generator g

wc cut-in wind speed in the wind conversion model
wr rated wind speed in the wind conversion model
wf cut-off wind speed in the wind conversion model
bWIND
m;h vector of parameters in the intraday wind model for

monthm hour h
bhm;h wind model parameter denoting the bias of daily-hour

for monthm hour h

bdm;h wind model parameter denoting the effect of daily-
average for monthm hour h

bh�1m;h wind model parameter denoting the effect of previous
hour for monthm hour h

bSRm;� vector of parameters in the surrogate value function for
monthm

c discount factor for the value function approximation
gch charging efficiency of battery
hnm n-th iterated coefficient vector of the value function for

monthm
le
m;h hourly mean value of random noise in the intraday wind

model for monthm
pa
m;d probability of intraday wind scenario realized in time

(m, d)
pem state transition probability of daily average wind value

for monthm
rb self-discharging rate of battery
re
m;h hourly standard deviation of random noise in the intra-

day wind model for monthm

Variables
bxt battery level in time t given scenario x
cw capacity of wind generators
cb capacity of battery
Dg
t shut-down cost of generator g in time t

dxt demand in time t given scenario x
em;h hourly random noise in the intraday wind model for

monthm
pxk;t dispatch decision from source k in time t given scenario

x
pxwind;t wind power output in time t given scenario x
sm;d day-to-day state vector in time (m, d)
sxt lost-demand in time t given scenario x
ug
t unit commitment of generator g in time t

U g
t start-up cost of generator g in time t

v̂n
m n-th iterated sampled observation for the value function

approximation for monthm
wt wind speed in time t

wday
m;d daily average wind value in time (m, d)

ŵday
m;d exogenous information variable of daily average wind

value realized in time (m, d)
xwcapa capacity acquisition of wind generator
xbcapa capacity acquisition of battery
xm;d vector of daily operational decisions in time (m, d)
x1;m;d vector of 1st stage decisions in the one-day operation

model in time (m, d)
xx2;m;d vector of 2nd stage decisions in the one-day operation

model in time (m, d) given scenario x

Functions
C daily operational cost function
f 1st stage cost function in the one-day operation model
Qx 2nd stage cost function in the one-day operation model

given scenario x
�Vm approximated value function for monthm
V̂SR
m surrogated function of the value function for monthm

/VF basis function for the value function approximation
/WIND basis function for the wind model
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