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h i g h l i g h t s

� Approximate solution for energy storage (ES) sizing and operation planning.
� Approximate solution significantly reduces the complexity of problem.
� Approximate solution for complex network with multiple applications of ESs.
� A rule-based control scheme for the near real-time operation of complex ES network.
� The control schema has been developed by mining the I/O statistical relationship.
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a b s t r a c t

In this paper, we consider multiple energy storage nodes distributed over a power distribution network,
and are purposed for multiple applications. The research problems of interests are to optimally locate
these nodes over the distribution network and to create day-ahead plans according to planned applica-
tions. The two problems are formulated as stochastic optimization problems, and hourly and time-
aggregated approximate solutions are presented. The approximation identifies time periods where load
and generation patterns demonstrate low variability, and marks the whole period as a single time zone,
thus significantly reducing the number of decision variables and the overall problem size. We show that
aggregate and hourly planning solutions are close. The planning problem can handle any number of stor-
age nodes with general topology and load connections, and deterministic or stochastic capacities. In this
paper, we focus on network of static energy storages with deterministic capacity. Finally, we build a novel
rule based control scheme for the near real time operation of the storage network by mining the statis-
tical relationship between input and optimal charge and discharge patterns.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Energy storage (ES) has the potential to offer a new means of
added flexibility on the electricity distribution systems. This flexi-
bility can be used in a number of ways, including adding value
towards asset management, power quality and reliability. An
important factor in evaluating the feasibility of ES technology is
the application(s) for which the storage is used for [1]. ES can pro-
vide local level services such as, peak shaving and renewable inte-
gration [2,3], and network level services, such as voltage and
frequency control [4]. It can also be utilized for loss minimization
and deferral of network infrastructure upgrades. With the use of
energy storage in a distribution networks for multiple applications,
however, comes the challenge of determining how best to control

these storage units under load and system state uncertainties. For
example, with increasing number of Electrical Vehicles (EVs) the
uncertainty in the electricity demand rises due to EV charging
demand [5–7]. But, on the other hand, Vehicle-to-Grid (V2G) tech-
nology, while mitigating some of this uncertainly, can add system
dynamics complexities to the network [8–10].

Han et al. [11] and Wong et al. [12] provide control algorithms
to maximize EV owner’s profit, which comes from selling power to
grid and participating in the frequency regulation market. They
formulate the problem as a discrete-time Markov decision process
and solve it by introducing an online learning algorithm which
iterates every hours based on available information. Koutsopoulos
et al. [13] study the optimal energy storage control problem by tak-
ing the point of view of a utility operator and focuses on arbitrage
application of energy storage. The authors show that the model can
be extended to account for a renewable source that feeds the stor-
age device. The same problem was considered in [14], where the
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cost of energy is minimized subject to both user demands and
prices using a Markov Decision Process. Dufo-Lopez et al. [15] con-
sider the energy storage in private facility to reduce the electricity
bill. They conclude that electricity price variation has a great effect
on the profitability of storage system. Renewable resource integra-
tion is an important application of energy storage, and charge-
discharge control policy of energy storage to serve this application
is presented by Wang et al. [16]. Renewable energy sources are
considered by Teleke et al. [17] too, where an open-loop optimal
control scheme was developed which incorporates the operating
constraints of battery energy storage. They use the battery energy
storage in a smoothing application where a wind farm is dis-
patched on an hourly basis based on the forecasted wind
conditions.

Earlier works on component sizing or optimal operation employ
different approaches, which are differentiated by decisional vari-
ables. Studies that take into account both sizing and scheduling
problems are generally scarce. Ru et al. in [18] determine the opti-
mal size of a grid-connected PV-battery system which is used in an
arbitrage application. Their objective is to minimize the net power
purchase cost plus battery capacity loss, without considering any
initial capital investment. Khalilpour et al. [19] introduce a deci-
sion support tool for sizing and operation of PV-battery system
in a single facility, with the objective of maximizing the net present
value generated by bill reduction. Zhang et al. [20] introduce a rule
based charge and discharge strategy which simultaneously opti-
mizes the battery sizing and operation in a bill management

application. The introduced rule-based approach works well for a
single PV-battery system with in the facility, however the interac-
tion between multiple battery units in more complex distribution
network has not been investigated. The similar problem was con-
sidered by Brekken et al. [21], where sizing and control methodolo-
gies for a battery-based energy storage system is presented for
wind farm applications. The sizing problem of distributed genera-
tor and energy storage system (single application – electricity cost
reduction) for demand response applications in smart households
has been studied in [22,23]. Andreotti et al. [24] consider a net-
work of renewable generation units and formulate a single-
objective optimization problem whose objective function is power
loss minimization while satisfying constraints on active and reac-
tive power at the interconnection bus. Nick et al. [25] studied the
optimal allocation of storage systems in an active distribution net-
work by defining a multi-objective optimization problem. The
application of renewable generation integration is also considered
in [26–29]. Van de ven et al. [30] present a battery control policy,
which minimizes the total discounted costs, taking into account
arbitrage application of energy storage. Jayawarna et al. [31] stud-
ied the energy storage power reliability application and present the
concept of using central energy storage system as the main fault
current source in micro-grid islanded mode.

To the best of our knowledge, there is a major gap in under-
standing how multiple storage units programmed for multiple
applications should operate in a distribution network. This paper
intends to fill this gap by developing simple but verifiable control

Nomenclature

t time index
s static storage node index
j demand node index
k renewable node index
i temporal zone index
d day index
y year index
Sc scenario (cluster) index
b tree index in tree-bagging method
CL number of clusters
c annual inflation rate (%/year)
a annual discount rate (%/year)
Ens;max storage unit s energy capacity (kWh)
Ps;max energy storage s rated capacity (kW)

InvCap
s investment unit cost on storage capacity ($/kWh)

InvPR
s investment unit cost on power rating ($/kW)

LScðj; iÞ total electricity demand during zone i at demand node j
for cluster Sc (kWh)

RScðk; iÞ total renewable generation during zone i at renewable
node k for cluster Sc (kWh)

Ld;yð:Þ demand matrix for day ‘‘d” in year ‘‘y”
Rd;yð:Þ renewable generation matrix for day ‘‘d” in year ‘‘y”
Prd;yð:Þ electricity price matrix for day ‘‘d” in year ‘‘y”
LScð:Þ representative demand matrix for cluster Sc
RScð:Þ representative renewable generation matrix for cluster

Sc
PrScð:Þ representative electricity price matrix for cluster Sc

ech;gs;i;Sc total energy charged from grid during zone i in storage
unit s for cluster Sc (kWh)

ech;rs;k;i;Sc total energy charged from renewable node k during
zone i in storage unit s for cluster Sc (kWh)

eds;j;i;Sc total energy discharged during zone i from storage s to
demand node j for cluster Sc (kWh)

edem;g
j;i;Sc total energy from grid during zone i to demand node j

for cluster Sc (kWh)
edem;r
j;k;i;Sc total energy from renewable k during zone i to demand

node j for cluster Sc (kWh)
ci;j configuration number between nodes i and j
Effch;s energy storage ‘‘s” charging efficiency
Effdis;s energy storage ‘‘s” discharging efficiency
PrwScðiÞ average electricity whole sale price during the hours of

zone i for cluster Sc ($/kWh)
Pnsub penalty for damage to substation due to reverse flow of

power ($/kWh)
Dem demand charge for peak demand ($/kW)
SOCs;i storage s energy level at the end of zone i (kWh)
dri duration of temporal zone i
Enmax maximum energy reservoir capacity
Pmax maximum power rating
SFs safety reserve capacity for storage unit s
ESL Storage - Demand Eligibility Matrix
ERS Renewable - Storage Eligibility Matrix
ERL Renewable - Demand Eligibility Matrix
STt network state vector at time t
ps control policy for storage s
ast control action of storage s at time t
rws

t (ST, a
s
tÞ reward function for storage s when action ast is taken
in state ST

Vps
value storage s under control policy ps

Y classification response vector (Control action vector)
LR level of on-site renewable generation
LD level of demands
EP electricity price
X classification feature matrix
B number of bags
s memory window in control module
dn nth digit in control action code
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