
Operation management of residential energy-supplying networks based
on optimization approaches

Tetsuya Wakui a,⇑, Hiroki Kawayoshi a, Ryohei Yokoyama a, Hirohisa Aki b

aDepartment of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
bResearch Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

h i g h l i g h t s

� Operation management system for residential energy supply networks is developed.
� Energy demand prediction, operation planning, and operation control is integrated.
� Energy demands are predicted by using support vector regression.
� Energy demand prediction and MILP-based operation planning is updated in the day.
� Developed system saves energy consumption in residential energy supply network.
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a b s t r a c t

An operation management system for residential energy-supplying networks using multiple cogenera-
tion units was developed by hierarchically integrating energy demand prediction, operational planning,
and operational control, using optimization approaches. The energy demand for multiple dwellings was
predicted by support vector regression with information on occupant behavior as well as forecasted
weather and energy demand history. Mixed-integer linear programming was employed for the opera-
tional planning of the cogeneration units to the predicted energy demand. The energy demand prediction
and operational planning were updated using a variable frequency receding horizon approach. This was
done to limit the unnecessary shutdown and start-up of the cogeneration units and to reduce the influ-
ences of prediction errors for energy demand. Regarding the operational control, the actual on–off sched-
ule of the cogeneration units conformed to the operational planning result. Additionally, the power and
heat outputs of the cogeneration units and the heat supply from the storage tanks were modulated in
response to the actual energy demand, based on predefined rules. The developed operation management
system was applied to annual operation simulation of a residential energy-supplying network consisting
of four cogeneration units using fuel cells in a housing complex. For comparative analysis, history-based
approaches for energy demand prediction and separate operation of each cogeneration unit were also
considered. The results revealed the effectiveness of the developed operation management system as
well as the high energy-saving performance of the residential energy-supplying network.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction and objective

Energy-supplying devices, including cogeneration [1] and air-
to-water heat pump units [2], are utilized worldwide for improving
energy savings in residential sectors. In Japan, cogeneration units
(CGUs) that use gas engines, polymer electrolyte fuel cells (PEFCs),
and solid oxide fuel cells (SOFCs), as well as air-to-water heat
pump units (HPUs) that use CO2 as refrigerant are available [3].

The CGUs have varying heat-to-power supply ratios, and do not
generally export surplus power [4]. For this reason, the CGU output
is modulated to the power and heat demand for each dwelling and
a storage tank is installed for intermittent heat supply [5]. The
HPUs are mainly operated late at night by using economical
night-time power; consequently, they require large-capacity stor-
age tanks. However, there is considerable heat loss from the stor-
age tanks [6]. These operational restrictions can prevent energy-
supplying devices from achieving energy savings.

The present study therefore focuses on a residential energy-
supplying network (R-ESN) using multiple energy-supplying
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devices [7] to enhance energy-saving performance. The power and
heat produced by energy-supplying devices is interchanged to
increase their operational flexibility. Our feasibility studies, based
on mixed-integer linear programming (MILP) for gas engine-
based CGUs [5,7], PEFC-CGUs [8], and SOFC-CGUs [9] demonstrated
the effectiveness of R-ESNs for energy savings. However, the
energy demand was regarded as deterministic in these feasibility
studies. To actually achieve high energy-saving performance, an
operation management system is required that manages opera-
tions of multiple energy-supplying devices, as well as power and
heat interchanges in response to uncertain variations in energy
demand.

Taking current practices into account, the present study devel-
ops an operation management system for R-ESNs using multiple

CGUs by hierarchically integrating energy demand prediction,
operational planning, and operational control, using optimization
approaches. The energy demand for multiple dwellings is predicted
by support vector regression (SVR) using quadratic programming
[10]. An MILP approach is employed for the operational planning
of multiple CGUs so as to meet the predicted energy demand. Con-
sequently, the on–off and power allocation schedules of multiple
CGUs are optimized. The energy demand prediction and opera-
tional planning are updated by using a novel variable frequency
receding horizon approach. In this approach, the horizon for the
energy demand prediction and operational planning recedes after
a lapse of multiple sampling times, unlike a general receding
horizon approach employed in a model predictive control (MPC)
[11]. In the operational control to the actual energy demand, the

Nomenclature

Operation management framework
H horizon
j index for sampling time in prediction and control

horizon
t sampling time
DT sampling time interval, h

Energy demand prediction
b bias, kW h/h
C regularized parameter
f SVR support vector regression model, kW h/h
h index for sampling time in prediction correction
i, I index and number for train data set
L number for divided groups of training data set
r prediction error index
u input variable vector
v prediction output, kW h/h
w weight coefficient vector
e insensitive error, kW h/h
n, n� slack variables
U high-dimensional feature vector

Operational planning
a, c performance characteristic parameters
E power, kW h/h
G gas consumption, m3/h
J objective function (primary energy consumption), MJ
k, K index and number for piecewise linear equations
M large positive number (parameter)
n, N index and number for cogeneration units
Q heat flow rate, kW h/h
S amount of stored heat, kW h
d binary variable expressing on–off status
K heat loss rate (parameter), 1/h
u conversion factor for primary energy (parameter), 1/h
ðbÞ predicted value (parameter)
ðÞ, ðÞ lower and upper limits (parameter)

Operational control
d actual on-off status
l index for sampling time in input horizon

Operating simulation
e power, kW
f CGU performance characteristic model of cogeneration units
g gas consumption, Nm3/h
q heat flow rate, kW

R ramp rate, kW/h
s amount of stored heat, kW h

Subscripts
CGU cogeneration unit
D demand
EH electric water heater
GB gas-fired boiler
GD external grid
IN input
M measured value
P prediction and control horizon
S simulation
ST storage tank

Superscripts
AC air-cooled heat exchanger
C consumption
DW shutdown
E power
F full storage state
G gas consumption
IN inlet
OUT outlet
Q heat
SB standby condition
STA start-up
T total value

Abbreviation
BL baseline operation
CGU cogeneration unit
HPU air-to-water heat pump unit
LW prediction using averaging energy demand at the same

sampling time during the last week
PEFC polymer electrolyte fuel cell
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear programming
MPC model predictive control
MV prediction using deterministic energy demand
PD prediction using energy demand at the same sampling

time on the previous day
R-ESN residential energy-supplying network
SE separate operation of each cogeneration unit
SOFC solid oxide fuel cell
SVR support vector regression
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