

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Factor analysis based optimal storage planning in active distribution network considering different battery technologies

Majid Daghi, Mahdi Sedghi*, Ali Ahmadian, Masoud Aliakbar-Golkar

Electrical Engineering Department, K. N. Toosi University of Technology, P.O. Box 16315-1355, Tehran, Iran

HIGHLIGHTS

- A novel four-layer approach for optimal battery planning is presented.
- Factor analysis is used for wind power data mining.
- Different battery technologies are compared.
- The technical and economic uncertainties are taken into account.

ARTICLE INFO

Article history: Received 5 May 2016 Received in revised form 29 August 2016 Accepted 30 August 2016

Keywords: Factor analysis Battery technologies Wind power Distribution network Uncertainty Optimization

ABSTRACT

Today's batteries are commercially developed technologies and are commonly used for energy storage in active distribution grids. In spite of their numerous advantages, batteries are expensive; consequentially, they should be installed and managed in an optimal manner. Furthermore, every battery technology has particular technical and economic characteristics that may be particularly well- or poorly-suited to certain applications. This paper represents a comparison based optimal planning of several battery technologies to find the best choice in distribution grid applications. The proposed planning methodology is a novel four-layer procedure that considers the uncertainty of battery characteristics as well as load and wind power. The long-term planning layer optimizes the location, capacity and power rating of batteries. The short-term scheduling layer includes the probabilistic optimal power flow with respect to technical constraints. In the uncertainty modeling layer, the technical and economic characteristics of battery technologies and load demands are modeled using fuzzy values. Moreover, in order to consider the correlations and independencies of the wind power profiles, they are classified to several categories using factor analysis technique in the classifying layer. The numerical results show that Zn-Br technology is the most suitable option in deterministic studies, however, the Na-S technology can be an alternative in uncertain conditions. Several sensitivity analyses are carried out to generalize and extend the results. Finally, it is found that more storage capacity is required in realistic conditions thanks to using factor analysis technique.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, energy storage units are used in Active Distribution Networks (ADNs) due to several advantages such as dispatching the renewable-based Distributed Generation (DG) resources, peak shaving, reliability enhancement and voltage regulation [1]. In [2], an optimal scheduling is proposed for storage units aiming at energy management and reliability enhancement of an AND, handling the uncertainty of wind energy, load and plug-in electric vehicles using point estimate method. Optimal load shifting by storage

scheduling is discussed in [3], and a comparison study is presented for two different retail tariffs, i.e. a time-of-use tariff and a real-time-pricing tariff. Moreover, the project benefits are investigated from both economic and environmental pollution points of view. Reducing the voltage violations by using a coordinated control strategy based on Photovoltaic (PV) and battery energy storage, a methodology is proposed in [4] for improvement of the voltage profile. In [5], a comprehensive review on different types of energy storage systems including pumped hydro, compressed air, super capacitors, superconducting magnetic, flywheels, batteries, and fuel cells is presented for wind power integration support. A dynamic programming method is proposed in [6], where compressed air energy storage is considered to accommodate intermittency of

^{*} Corresponding author.

E-mail address: meh.sedghi@gmail.com (M. Sedghi).

Nomenclature			
Abbreviations		$V_{\rm max}$	maximum allowed voltage magnitude
ADN	Active Distribution Network	$S_{s,t}^{SS}$	power of s-th HV/MV substation at time t
DG	Distributed Generation		
PV	Photovoltaic	$S_{d,t}^{DG}$	power of d-th DG unit at time t
PSO	Particle Swarm Optimization	$S_{k,t}^{ST}$	charge/discharge power of k-th storage unit at time t
FLF	Fuzzy Load Flow		
FA	Factor Analysis	$S_{l,t}^{LD}$	load demand of <i>l</i> -th node at time <i>t</i>
POPF	Probabilistic Optimal Power Flow	S_t^{LOSS}	total power loss in distribution network at time t
O&M	operation and maintenance	$n_{V,t}^{VIO}$	number of nodes in which the voltage magnitude
HV/MV	high voltage/medium voltage	· · v ,r	constraint is violated (at time t)
ENS	Energy Not Supplied	$n_{S,t}^{VIO}$	number of devices in which the capacity constraint is
SOC	State of Charge	S,t	violated (at time t)
SA	Simulated Annealing	\widetilde{A}	a fuzzy number
GA	Genetic Algorithm	$\widetilde{\widetilde{B}}$ $\widetilde{\widetilde{F}}$	a fuzzy number
LCA	life cycle assessment	\widetilde{F}	a fuzzy number
		F	defuzzified form of \widetilde{F}
Variables		X_i	the <i>i</i> -th measured variable
OF	objective function	F_i	the <i>i</i> -th factor
IC	investment cost	a_i	factor scores for variable i
OC	operation cost	d_i	part of variable X_i which cannot be explained by the fac-
RC	reliability cost	•	tors
PEN	penalty factor	ω_i	the <i>i</i> -th eigenvector
C_{ST}^{INSC}	installation cost function considering the storage capac-	$ \gamma_i $	the <i>i</i> -th eigenvalue
INICD	ity	φ	rotation angle
C_{ST}^{INSP}	installation cost function considering the storage power	FF	final objective function
DEDC	rating	OF_g	objective function considering the g-th group of wind
C_{ST}^{REPC}	replacement cost function considering the storage capacity	-	profiles number of wind samples in g-th group
C_{ST}^{REPP}	replacement cost function considering the storage power rating	w _g PF	price factor
CAP_k^{ST}	capacity of the k-th storage	Pc_{peak}	electricity price in peak load
		Pc_{normal}	electricity price normal load electricity price in light load
PR_k^{ST}	power rating of the <i>k</i> -th storage	Pc _{light} FRF	failure rate factor
OC_{yr}	annual operation cost	TM	iditure rate ractor
Infr	inflation rate	3.5	
Intr	interest rate	Matrices	mototion motuis
T	period of the project	R	rotation matrix
C_{ST}^{OM}	O&M cost function of battery	$\Lambda_{ m m}$	loading matrix
$C_{s,t}^{SS}$	cost of purchased energy at s-th HV/MV substation in t- th hour	Indices	
AILR	annual increment load rate	n_{ST}	number of all installed storage units
λ_e	rate of <i>e</i> -th failure event	n_{SS}	number of all HV/MV substations
CO	outage cost function	n_{EV}	number of all possible failure events in distribution net-
P_e^{OT}	interrupted load due to <i>e</i> -th failure event	··EV	work
	outage duration due to e-th failure event	n_{EQ}	number of all devices
r _e P ^u	active power of equipment u at time t	n_{LD}	number of all load nodes
P_t^u P_{\max}^u Q_t^u Q_{\max}^u	maximum allowed active power of equipment u	n_{DG}	number of all DG units
O^{u}	reactive power of equipment u at time t	n_{GR}	number of all groups
O^u	maximum allowed reactive power of equipment <i>u</i>	k	storages
$SOC_{k,t}$	SOC of the <i>k</i> -th battery at time <i>t</i>	S	HV/MV substations
$SOC_{k,min}$	minimum allowed SOC of the <i>k</i> -th battery	yr	years
$SOC_{k,max}$	maximum allowed SOC of the <i>k</i> -th battery	t t	hours
	efficiency of storage unit	e	events
$\eta_{P_{k,t}^{ch}}$	charge power of the <i>k</i> -th battery at time <i>t</i>	и	equipment
		1	loads
$P_{k,t}^{disch}$	discharge power of the k -th battery at time t	d	distributed generations
$V_{l,t}$ V_{\min}	voltage magnitude in l -th load node at time t minimum allowed voltage magnitude	g	groups

wind and PV energy. In [7], an energy management strategy based on flywheel energy storage is presented. The wind power smoothing is considered in the objective function, and GAMS software is used to solve the problem.

Among the energy storage technologies, the batteries have been widely considered to be utilized in power distribution networks [8]. Although the batteries bring important advantages to the distribution grids, they are expensive technologies because of

Download English Version:

https://daneshyari.com/en/article/4916589

Download Persian Version:

https://daneshyari.com/article/4916589

<u>Daneshyari.com</u>