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h i g h l i g h t s

� Two common tests for observing battery open circuit voltage performance are compared.
� The temperature dependency of the OCV-SOC relationship is investigated.
� Two estimators are evaluated in terms of accuracy and robustness for estimating battery SOC.
� The incremental OCV test is better to predetermine the OCV-SOCs for SOC online estimation.
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a b s t r a c t

Battery state of charge (SOC) estimation is a crucial function of battery management systems (BMSs),
since accurate estimated SOC is critical to ensure the safety and reliability of electric vehicles. A widely
used technique for SOC estimation is based on online inference of battery open circuit voltage (OCV).
Low-current OCV and incremental OCV tests are two common methods to observe the OCV-SOC relation-
ship, which is an important element of the SOC estimation technique. In this paper, two OCV tests are run
at three different temperatures and based on which, two SOC estimators are compared and evaluated in
terms of tracking accuracy, convergence time, and robustness for online estimating battery SOC. The tem-
perature dependency of the OCV-SOC relationship is investigated and its influence on SOC estimation
results is discussed. In addition, four dynamic tests are presented, one for estimator parameter identifi-
cation and the other three for estimator performance evaluation. The comparison results show that esti-
mator 2 (based on the incremental OCV test) has higher tracking accuracy and is more robust against
varied loading conditions and different initial values of SOC than estimator 1 (based on the low-
current OCV test) with regard to ambient temperature. Therefore, the incremental OCV test is recom-
mended for predetermining the OCV-SOCs for battery SOC online estimation in BMSs.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid development of electric vehicles (EVs) in the last
decade has drawn increasing attention from both industry and
academia due to the global energy crisis and demands to reduce
greenhouse gases. Different types of batteries, such as lithium,
nickel-cadmium, lead-acid, and alkaline, are widely used as the
dominant energy source in EVs. In particular, lithium-ion batteries
are the most promising and competitive candidates because of
their unique features, including their high energy density, long

cycle life, high efficiency, and environmental-friendly performance
[1–5]. As a critical component inside an EV, a lithium-ion battery
should operate stably to guarantee the safety and reliability of
the entire electric system. Therefore, a battery management sys-
tem (BMS) that performs as a connector between the vehicle and
the battery is developed to indicate the state of batteries and avoid
abuse of batteries. One of the main concerns of BMSs is battery
state of charge (SOC) estimation. SOC is a measure of the amount
of charge stored in a battery at the present moment and acts as
the equivalent of a ‘‘fuel gauge” in an electric vehicle. SOC shows
how long the battery will sustain before it is recharged. Accurate
SOC estimation can relieve users’ anxiety about running out of
battery power. Moreover, it can ensure that batteries operate
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appropriately within desired limits and thus can prolong a bat-
tery’s useful life by avoiding over-charging or over-discharging.
However, battery SOC cannot be measured directly but must be
inferred from observed variables, such as current and voltage.
Indeed, many factors can affect the accuracy of SOC estimation
results and should be investigated [6]. Therefore, SOC estimation
is not only a vital function but also a crucial task of BMS to ensure
the safety, efficiency, and longevity of a battery for vehicle life
extension.

The following SOC estimation techniques are widely used: the
coulomb counting method via the integration of the loading cur-
rent [7–9]; the data-driven method, which considers a battery as
a ‘‘black box” and uses machine learning techniques to analyze
data [10–12]; and the physical model-based method via equivalent
circuit models (ECMs) and electrochemical models [13–21]. In
addition, a combination of the above-mentioned methods is used
[22–26]. For algorithm implementation in a BMS, a model-based
filtering approach is most popular due to its merits: high accuracy,
closed-loop, self-corrective ability, and good adaptability. Among
battery models, equivalent circuit models (ECMs) are much more
practical than electrochemical models since ECMs facilitate esti-
mation schemes with electrical parameters (e.g., charge/discharge
current and battery terminal voltage), which are much easier to
measure online than electrochemical model parameters (e.g., film
resistance and diffusion coefficients). Open circuit voltage (OCV)
is a vital element in ECMs because it builds a connection between
measured electric parameters and SOC via an OCV-SOC mapping
curve. For a certain battery type, its OCV performs as a function
of its SOC in nature. The premise of using OCV-SOC is that a battery
needs to rest a long time to ensure that its terminal voltage
approaches the OCV [6]. However, a long rest time is not practical
for EV batteries in the field. Thus filtering techniques based on
state-space models are utilized to enhance SOC estimation through
combining OCV and coulomb counting [27].

Table 1 shows a common processing method of SOC online esti-
mation for a BMS is shown in Table 1. Firstly, the relationship
between OCV and SOC is predetermined by an offline OCV-SOC
test. The corresponding mapping data is then stored in a BMS as
a lookup table or a mathematical function. Secondly, a battery
ECM is selected to model the battery dynamic behavior with
parameter identification. Lastly, filtering approaches are imple-
mented to enhance model-based SOC online estimation [28].
Efforts have been made to improve the SOC estimation accuracy
and the efficiency of a BMS from different aspects. For example,
OCV-SOC functions instead of a lookup table have been proposed
to describe the relationship between SOC and OCV and thus to save
the memory space in a BMS [29–34]. Studies have been conducted
on the model selection to pursue a model that can provide high
estimation accuracy and also ensure the computational efficiency
of a BMS. A first-order resistance-capacitor (RC) model using a par-
allel RC network to describe the dynamic relaxation effects of the
battery is recommended as a model that balances SOC estimation
accuracy with model complexity [35]. In addition, different filter-
ing algorithms have been used for online estimation. For instance,
the studies in Refs. [6,26,33,36–38] adopted extended Kalman fil-
ter, robust extended Kalman filter, and unscented Kalman filter
to estimate the SOC. Instead of the Kalman family, the studies in
Refs. [39–42] used particle filter, unscented particle filter and dual
particle filter to do SOC estimation. Luenberger observer [43] and
support vector machine method [44] were also utilized for battery
SOC estimation. The performance of different filtering algorithms is
compared in terms of tracking accuracy, convergence behavior, and
computation time [28].

Several existing issues are seldom addressed in the literature.
Firstly, as the basis for SOC online estimation, OCV-SOC tests have
not been comprehensively evaluated yet. There are two OCV tests

for OCV-SOC mapping commonly used in both industry and acade-
mia: the low-current OCV test and the incremental OCV test. One
OCV-SOC mapping result differs from another and thus has a dif-
ferent influence on SOC online estimation. It will be helpful to com-
pare two OCV tests and their influence on SOC online estimation
results in order to give a suggestion to manufacturers regarding
offline predetermined OCV-SOC relationship. Secondly, the tem-
perature dependence of the two OCV-SOC mapping results is rarely
investigated. For an existing BMS, an OCV–SOC relationship con-
structed at a certain temperature (e.g., room temperature) is
widely employed [22]. A large error may occur in inferring SOC
when the battery is operating at varied temperatures instead of
at room temperature, which is typical in the field. Lastly, most
SOC online estimation models are validated using a single loading
profile and show high estimation accuracy in existing studies
[6,23,26,45,46]. But these estimators would perform poorly if they
were applied in other working conditions (i.e., using different load-
ing profiles). Therefore, it makes sense to verify the robustness of
the SOC estimation approach against varied loading profiles.

This paper innovatively investigates the influence of different
OCV tests on online SOC estimation and the temperature depen-
dency of battery OCV characteristic. The main contributions of this
paper are as follows: (1) to present a general understanding and a
comparison of two OCV-SOC mapping techniques; (2) to investi-
gate the temperature dependency of OCV-SOC curves via two
OCV tests, and (3) to show the influence of two OCV tests on SOC
online estimation and thus to give a suggestion for predetermining
offline the OCV-SOC relationship for practical BMS application.

The remainder of this paper is arranged into five sections. The
experiments conducted for this study are introduced in Section 2.
Two OCV-SOC mapping results at various temperatures which
reflect the temperature dependency of OCV curves is presented
in Section 3. Section 4 illustrates the implementation of the SOC
online estimation algorithm. Section 5 shows the influence of
two OCV tests on the SOC estimation results. A comparison is given
using statistics, and the robustness is verified with regard to vari-
ous experimental cases. Section 6 concludes with a summary of the
main findings of this paper.

2. Experiments

As shown in Fig. 1, the experimental platform consisted of the
test samples, a thermal chamber, an Arbin BT2000 battery test
system, and a PC with Arbin software to give test system orders
(e.g. charging, discharging) and monitor data information. The test
samples were the 18,650 LiNiMnCoO2/Graphite lithium-ion cells.
Their basic specifications are given in Table 2. Three separate test
schedules were conducted on the battery test bench at low tem-
perature (0 �C), room temperature (25 �C), and high temperature
(45 �C), respectively. Test samples were placed inside the chamber
so that their ambient temperature was controlled. All the test data
were measured and recorded in 1 s intervals.

Table 1
Common processing of SOC online estimation for BMS.

Step 1 OCV-SOC mapping
1. OCV-SOC test
2. Determine OCV-SOC relationship
a. OCV-SOC lookup table
b. OCV-SOC functions

Step 2 Battery modeling
1. Select a battery equivalent circuit model
2. Model parameter identification

Step 3 Algorithm implementation
a. Kalman filter family
b. Particle filter
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