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h i g h l i g h t s

� A new cascaded real time energy management strategy is proposed.
� A velocity predictor is proposed based on radial basis function neural network.
� Forward dynamic programming is employed in nonlinear model predictive control to improve efficiency.
� Engine and motors are coordinated with fast sampling time.
� Results of simulation and experiments showed that fuel economy was improved compared with other methods.
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a b s t r a c t

In this paper, a real time energy management strategy (EMS) is proposed for a dual-mode power-split
hybrid electric vehicle in order to improve the fuel economy and maintain proper battery’s state of charge
(SOC) while satisfying all the constraints and the driving demands. The EMS employs a cascaded control
concept which includes a velocity predictor, a master controller and a slave controller. The short term
vehicle velocity predictor is developed to improve the controller performance based on radial basis func-
tion neural network. The master controller based on nonlinear model predictive control is developed with
slow sampling time to sustain SOC and to reduce fuel consumption. Forward dynamic programming is
employed here to solve the optimal problem. And the PID-based slave controller is developed with fast
sampling time to coordinate the engine and the two motors. Simulation and testbed experiments are per-
formed to verify it and the results demonstrate the effectiveness of the proposed approach compared
with other methods.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the years, due to the shortage of fuel resources and the
concerns of environmental impacts, the demand of electric power
has become more and more important. Meanwhile, automotive
customers’ demands in terms of performance, safety and comfort
for their new cars can be satisfied better in electric vehicles. Hence,
many different types of electric vehicles are developed by enthusi-
astic automotive companies. But as the market shows, hybrid elec-
tric vehicles (HEVs) seem to be the most short-term promising
solution [1]. An HEV adds an electric power path to the conven-
tional powertrain to improve its performance and fuel economy.
With the help of electric power, an HEV’s engine can be better
sized and work more efficiently, since the power needed can be
compensated by electric motor generators (MGs). Also, when the

vehicle is decelerating, the MGs can capture part of the vehicle
kinetic energy and recharge the battery [2].

Based on the hybrid configuration, there are different types of
HEVs, such as series, parallel and power-split, which can be used
for different purposes. The Toyota Hybrid System (THS) is the most
successful single-mode power-spit configuration used in small
power vehicles. It enables the engine to operate at its efficient
regions, independent of the vehicle speed, which also means an
electronically controlled continuously variable transmission (E-
CVT). Dual-mode power-split configuration is an extended version,
and it is often used in heavy duty vehicles, like trucks and SUVs.
Compared with single-mode HEVs, dual-mode power-split HEVs
can provide larger power with two MGs of the same size. Because
the peak power of the two MGs can partly be decoupled from the
engine power. Also, dual-mode power-split HEVs can achieve
higher efficiency through the overall vehicle velocity range [3–5].

In order to fully exploit the capabilities of the HEV, an appropri-
ate energy management strategy (EMS) is necessary. The primary
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objectives of EMS are to minimize fuel consumption, to fully take
advantage of batteries and to take into account all physical con-
straints of the system. Current existing strategies are largely based
on heuristic rules. Defining a set of thresholds to build a rule-based
control strategy like [6–11], or using fuzzy logic for control algo-
rithm development like [12–15], is relatively easy to achieve. These
methods mostly stem from engineering intuition, which are some-
times far from the actual optimal solution. An alternative approach
is optimization-based control strategy [16–20]. Recently, many
researches have been done using optimal control methods like
dynamic programming (DP) [21–23] and Pontryagin’s Minimum
Principle (PMP) [24,25]. These techniques require the full knowl-
edge of entire driving cycle in advance, so they can only be used
in off-line simulation. However, since DP results are global optimal,
they are always used as benchmarks for the best achievable perfor-
mance. Methods that are implementable in real time have also
been developed. Equivalent consumption minimization strategy
(ECMS) [2] defines an equivalent fuel cost for the battery energy,
so it can be solved at each sampling time which makes it capable
of being applied online. But it is quite sensitive to its tuning param-
eters and the dynamics of the system are not considered. Ref. [26]
proposes a new ECMS which takes into account not only fuel con-
sumption, but also emissions and battery aging. Ref. [27] proposes
a total cost minimization strategy (TCMS) as least costly energy

management considering the grid energy, the battery life and the
fuel consumption. Besides these methods, multiple advanced algo-
rithms such as particle swarm optimization [28], machine learning
[29], genetic algorithm [30] and simulated annealing [31] are also
employed to develop various strategies.

Model predictive control (MPC) is also proposed in some refer-
ences to build a controller. This MPC-based controller can offer an
optimal solution in real time and is implementable with limited
computation and memory resources. Ref. [32] presents an energy
management strategy based on linear time-varying MPC without
a priori knowledge of the future load demand. Ref. [33] proposes
a model predictive controller to extend battery life for a system
with the combination of battery and supercapacitor. These meth-
ods need to linearize the system so the solution is not always the
optimal. Ref. [34] proposes nonlinear model predictive control
(NMPC) to further improve fuel economy. In order to fully take
advantage of MPC algorithm, some approaches are developed to
predict the future demand of vehicles. Ref. [35–38] propose an
exponentially varying velocity predictor. This method is simple
and provides an intuitive understanding of how velocity prediction
affects fuel economy. Ref. [39] proposes path-forecasting for trajec-
tory planning based on GPS data, but such an approach is not fea-
sible everywhere due to some missing map information. Ref. [40]
implements a Markov chain to represent driver behavior. And

Nomenclature

Af frontal area of the vehicle
Cbatt battery capacity
Cd drag coefficient
ci neural net center
f e fuel consumption look-up table
g gravity acceleration
h number of NN hidden layer nodes
if gear ratio of final drive
Je rotational inertia of engine
JMG1 rotational inertia of MG1
JMG2 rotational inertia of MG2
k1 PG1 inherent parameter
k2 PG2 inherent parameter
k3 PG3 inherent parameter
m vehicle mass
mf fuel consumption
Np prediction horizon
Pbatt battery power
Pload actual load disturbance
PMG1 MG1 power
PMG2 MG2 power
Ploss
MG1 MG1 power losses

Ploss
MG2 MG2 power losses

p number of NN outputs
Rbatt battery internal resistance
rw radius of wheels
SOC0 initial SOC value
SOCr reference SOC value
Tbrake friction brake torque
Tdemand future vehicle torque demand
Tdrive torque acting on the wheels
Te engine torque
Te d demand engine torque
TMG1 MG1 torque
TMG2 MG2 torque
Tout output torque
t0 current time

th prediction horizon
V vehicle velocity
Vdemand future vehicle velocity demand
Voc battery open circuit voltage
wh final penalty weight
wm fuel penalty weight
ws SOC penalty weight
wt torque penalty weight
ww speed penalty weight
Zr ring gear teeth number
Zs sun gear teeth number
a driver’s pedal position
h road grade
l friction coefficient
q air density
r spread width
xc carrier gear speed
xe engine speed
xe d demand engine speed
xMG1 MG1 speed
xMG1 d desired MG1 speed
xMG2 MG2 speed
xMG2 d desired MG2 speed
xout output speed
xs sun gear speed
xr ring gear speed
DP dynamic programming
EMS energy management strategy
HEV hybrid electric vehicle
MG electric motor generators
MPC model predictive control
NMPC nonlinear model predictive control
NN neural network
PG planetary gear set
RBF radial basis function
SOC state of charge
VP velocity predictor
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