Applied Energy 189 (2017) 725-738

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk

Suh-Young Lee^a, Jae-Uk Lee^a, In-Beum Lee^a, Jeehoon Han^{b,*}

^a Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
^b School of Chemical Engineering, Chonbuk National University, Jeon-ju, Republic of Korea

HIGHLIGHTS

• A stochastic decision-making algorithm for CCS networks incorporating tolerance on risk is provided.

• Optimization and modeling of CCS networks is performed.

• Economic and Life Cycle Assessment of CCS networks is conducted.

• A case study based on power-plant CO₂ emission in Korea is presented in this study.

ARTICLE INFO

Article history: Received 25 October 2016 Received in revised form 9 December 2016 Accepted 12 December 2016

Keywords: CCS Optimization Life Cycle Assessment Stochastic model Downside risk

$A \hspace{0.1in} B \hspace{0.1in} S \hspace{0.1in} T \hspace{0.1in} R \hspace{0.1in} A \hspace{0.1in} C \hspace{0.1in} T$

We present a stochastic decision-making algorithm for the design and operation of a carbon capture and storage (CCS) network; the algorithm incorporates the decision-maker's tolerance of risk caused by uncertainties. Given a set of available resources to capture, store, and transport CO_2 , the algorithm provides an optimal plan of the CCS infrastructure and a CCS assessment method, while minimizing annual cost, environmental impact, and risk under uncertainties. The model uses the concept of downside risk to explicitly incorporate the trade-off between risk and either economic or environmental objectives at the decision-making level. A two-phase-two-stage stochastic multi-objective optimization problem (2P2SSMOOP) solving approach is implemented to consider uncertainty, and the ε -constraint method is used to evaluate the interaction between total annual cost with financial risk and an Eco-indicator 99 score with environmental risk. The environmental impact is measured by Life Cycle Assessment (LCA) considering all contributions made by operation and installation of a CCS infrastructure. A case study of power-plant CO_2 emission in Korea is presented to illustrate the application of the proposed modeling and solution method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon capture and storage (CCS) technologies capture the carbon dioxide (CO_2) emitted by burning fossil fuels and by industrial processes, and store it in underground geological formations and aquifers. These technologies have been considered as the most promising to mitigate CO_2 released from large-scale fossil fuel use [1–3]. On a global basis, if large-scale CCS is to considerably contribute to reducing CO_2 emission, it must operate at a massive scale, on the order of 3.5 billion tons of CO_2 per year [4]. Today, it operates on the scale of millions of metric tons (MT) of CO_2 per year [5]. The recent literature of CCS focuses on large-scale (>1 MT CO_2 per year) CCS systems, which are strongly favored by the

* Corresponding author. E-mail address: jhhan@jbnu.ac.kr (J. Han).

http://dx.doi.org/10.1016/j.apenergy.2016.12.066 0306-2619/© 2016 Elsevier Ltd. All rights reserved. economics of scale. The U.S Department of Energy planned to develop of large-scale CCS projects in 2018 [6,7], and many studies have been conducted to evaluate the potential of nation-wide [8–11] and Europe-wide CCS projects [12]. In this situation, establishing optimized CCS networks and developing effective algorithms to formulate networks is crucial to enable large-scale CCS systems that encompass a wide range of industrial clusters from capture facilities to sequestration sites [13,14].

Although the technology at each step of the process has been in use for many decades, large-scale commercialized CCS projects are very expensive and are composed of complex networks that may be susceptible to breakdown, so because of these uncertainties, no such projects have been developed [15,16]. The major complications in the planning of CCS networks are various sources of uncertainty, such as permeability and porosity of reservoir, fluctuation of CO₂ emission level of each source, variability of construction and

Notation

Indices	
b_1	environment burdens from operation
b_2	environment burdens from installation
С	type of capture facility
d	pipeline diameter
g	geographical region
g'	geographical region $(g' \neq g)$
i	physical form of CO ₂
k	technology set
l	type of transport mode
п	damage category
р	type of utilization facility or production facility
S	type of sequestration facility
si	type of source industry
sp	source plant name
x	impact category
SC	scenarios

Parameters

- $\label{eq:ccRfacility} \begin{array}{c} \text{capital charge rate of facilities} \text{the rate or return} \\ \text{required on invested capital cost, } 0 \leqslant \text{CCR} \textit{facility} \leqslant 1 \end{array}$
- $Loff_{l,g,g'}$ average delivery distance between regions g and g' by transport mode l offshore, km trip⁻¹
- $Lon_{l,g,g'}$ average delivery distance between regions g and g' by transport mode l onshore, km trip⁻¹

LR learning rate—cost reduction as technology manufacturers accumulate experience, $0 \le LR \le 1$

SCC_{i,s,g}capital cost of establishing CO2 sequestration facility
type s sequestrating CO2 in physical form i in region g, \$TPICoffdtotal capital cost of installing pipeline with pipe diam-

- eter *d* offshore, $\mbox{$km^{-1}$}$ *TPICon_d* total capital cost of installing pipeline with diameter *d* onshore. $\mbox{$km^{-1}$}$
- $TPOCoff_{sc,d}$ total operating cost of pipeline with pipe diameter *d* offshore in each scenario *sc*, $\$ km⁻¹ t CO₂⁻¹

*TPOCon*_{*sc,d*} total operating cost of pipeline with pipe diameter *d* onshore in each scenario *sc*, $\$ km⁻¹ t CO₂⁻¹

- $UCC_{sc,i,c,si}$ unit capture cost for CO₂ captured in physical form *i* by capture facility type *c* in source industry *si* in each scenario *sc*, $t CO_2^{-1}$
- $USC_{sc,i,s}$ unit sequestration cost for CO₂ sequestered in physical form *i* by sequestration facility type sin each scenario *sc*, $$\cdot t CO_2^{-1}$

 $wo_{sc,b_1,c}^{Ca}$ entry of emission inventory from operation b_1 associated with the capture per one unit of CO₂ by capture facility type *c* in each scenario *sc*, kg·t CO₂⁻¹

- $wo_{sc,b_1,l}^{Tr}$ entry of emission inventory from operation b_1 per one unit of CO₂ mass transported one unit of distance by transportation means *l* in each scenario *sc*, kg km⁻¹·t CO₂⁻¹
- $wo_{sc,b_1,s}^{Sq}$ entry of emission inventory from operation b_1 associated with the sequestration of one unit of CO_2 by sequestration facility type sin each scenario sc, kg·t CO_2^{-1}
- v_{sc,n,x,b_1} damage factor of environment burden b_1 in terms of damage category n and impact category x
- $w_{b_{2,c}}^{Ca}$ entry of emission inventory from installation b_2 from installing one capture facility of type c, kg
- $wi_{b_2,l}^{Tr}$ entry of emission inventory from installation b_2 per unit of distance from installing transportation means l, kg km⁻¹

wi ^{sq}	entry of emission inventory from installation b_2 from	
-2,-	installing one sequestration facility of type s, kg	
v_{sc,n,x,b_2}	damage factor of environment burden b_2 in terms of	
	damage category n and impact category x , kg	
η_n	normalization factor for damage categories belonging	
	to set n	
$\vartheta_{r,n}$	weighting factor for each normalized damage category	
	n according to perspective categories r	
Ω^{Fin}	cost target, \$	
Ω^{Env}	Eco99 target	
prob _{sc}	probability of each scenario sc	
ρ_{risk}	goal programming weight for risk formulations	
Binary variables		
BC.	investment of capture facility type c capturing CO_{r} in	
DC _{i,c,si,sp,g}	investment of capture facility type t capturing CO ₂ in	

- $BC_{i,c,si,sp,g}$ investment of capture facility type *c* capturing CO₂ in physical form *i* in source plant *sp* of industry type *si* in region *g*
- $X_{i,l,g,g'}$ 1 if CO₂ in physical form *i* is to be transported from region *g* to *g'* by transport mode l, 0 otherwise

Integer variables

- $NS_{i,s,g}$ number of well or injection facilities of type *s* sequestering CO_2 in region *g*
- *NTPon*_{*i,l,g,g',d*} number of pipelines with diameter *d* for transporting CO_2 in physical form *i* between regions *g* and *g'* onshore
- $NTPoff_{i,l,g,g',d}$ Number of pipelines with diameter *d* for transporting CO₂ in physical form *i* between regions *g* and *g'* offshore

Continuous variables

continuous	Vullubics
$C_{sc,i,c,si,sp,g}$	amount of CO_2 in physical form <i>i</i> captured by capture
	facinity type c in source plant sp of industry type si in re-
	gion gin each scenario sc, t $CO_2 \cdot y$
FCC	facility capital cost, \$ y ⁻¹
FOC _{sc}	facility operating cost in each scenario sc, y^{-1}
Qpipeline _{sc,}	$i_{i,l,g,g',d}$ flow rate of CO ₂ in physical form <i>i</i> transported by pipelines with diameter <i>d</i> between regions <i>g</i> and <i>g'</i> in
	each scenario sc, t $CO_2 \cdot y^{-1}$
$S_{sc,i,s,g}$	amount of CO_2 in physical form <i>i</i> sequestered by
	sequestration facility type <i>s</i> in region gin each scenario
	sc, t $CO_2 \cdot y^{-1}$
TAC _{sc}	total annual cost in each scenario sc, v^{-1}
TCC	transport capital cost, \$ y ⁻¹
TCCoffshore	transport capital cost for CO ₂ offshore, v^{-1}
TCConshore	transport capital cost for CO_2 onshore, $\sqrt[5]{y^{-1}}$
TOC _{sc}	transport operating cost in each scenario sc, v^{-1}
IO_{k}^{k}	environment impact of operation of technology set k in
sc,n,x,g	terms of damage category n and impact category x in
	region gin each scenario sc. impact v^{-1}
H^k	environment impact of installation of technology set k
n,x,g	in terms of damage category n and impact category x
	in region σ impact v^{-1}
ח	environment damage score of the damage category n in
$D_{sc,g,n}$	region g in each scenario sc damage u^{-1}
Eco00	total environment impact scene in each scenario se
$EC099_{sc}$	total environment impact score in each scenario sc,
Fin	score y
∂_{sc}^{rm}	positive deviation from the cost target Ω^{cm} for design x
En a	under scenario sc
δ_{sc}^{Env}	positive deviation from the cost target Ω^{env} for design x
	under scenario sc
Functions	
FDD' 1/ C	Fin C 111 11 C 1.

- $FDRisk(x, \Omega^{Fin})$ financial downside risk of solution x at a cost target Ω^{Fin}
- $EDRisk(x, \Omega^{Env})$ environmental impact downside risk of solution x at an Eco99 score target Ω^{Env}

Download English Version:

https://daneshyari.com/en/article/4916785

Download Persian Version:

https://daneshyari.com/article/4916785

Daneshyari.com