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h i g h l i g h t s

� A framework for multi-objective linear optimisation under uncertainty is proposed.
� The uncertainty and the multiple objectives are modelled as parameters.
� The optimal solution is expressed as explicit functions of the parameters.
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a b s t r a c t

Process and energy models provide an invaluable tool for design, analysis and optimisation. These models
are usually based upon a number of assumptions, simplifications and approximations, thereby
introducing uncertainty in the model predictions. Making model based optimal decisions under uncer-
tainty is therefore a challenging task. This issue is further exacerbated when more than one objective
is to be optimised simultaneously, resulting in a Multi-Objective Optimisation (MO2) problem. Even
though, some methods have been proposed for MO2 problems under uncertainty, two separate optimisa-
tion techniques are employed; one to address the multi-objective aspect and another to take into account
uncertainty. In the present work, we propose a unified optimisation framework for linear MO2 problems,
in which the uncertainty and the multiple objectives are modelled as varying parameters. The MO2 under
uncertainty problem ðMO2U2Þ is thus reformulated and solved as a multi-parametric programming
problem. The solution of the multi-parametric programming problem provides the optimal solution as
a set of parametric profiles.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Optimisation under uncertainty

Variations in key parameters and data used to mathematically
model a system can often lead to unexpected deviation from the
predicted behaviour of the system. For example, parameters like
raw material quality, machine availability, safety measures and
market requirements can fluctuate with respect to time. In energy
and process systems, uncertainty can be either epistemic, such as
the value of heat transfer coefficient or the kinetic constant of a
reaction, or aleatory such as the demand of energy for the next
month or the price of raw material used in a process.

To deal with the uncertainty, a number of formulations and
solution techniques, including stochastic programming, fuzzy

mathematical programming and multiperiod optimisation, have
been proposed in the literature [1–5]. In fuzzy mathematical pro-
gramming, the random parameters are treated as fuzzy numbers,
the constraints as fuzzy sets and some constraint violations are
allowed. Fuzzy mathematical programming can be either flexible
or possibilistic with regard to where the uncertainty is located in
the optimisation problem [6]. In the stochastic programming
approach, the decision maker has access to probability distribu-
tions which describe the nature of the uncertainty. For the case
when the distributions are continuous, a discretisation scheme is
employed to compute the discrete probability distributions. The
deterministic model is then transformed into a multistage stochas-
tic programming problem and a number of scenarios are consid-
ered for different realisation of uncertainty [4]. In the two stage
stochastic programming approach the optimisation variables are
classified in two groups: the first-stage ones which must be deter-
mined before the realisation of the uncertainty and the second-
stage ones that enact in a recursive way after the value of uncertain
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parameters has been realised. Another technique used to approach
uncertainty that was initially introduced from Bellman [7], is
stochastic dynamic programming, where multistage decision pro-
cesses are considered and the uncertainty is part of the dynamic
scheme. Grossmann and Morari [8], introduced the concept of
flexibility analysis to deal with design and operation of process
systems. Multi-parametric programming on the other hand, is
an optimisation based methodology that provides a complete
map of the optimal solution in the entire range of parametric
variability [9].

1.2. Multi-objective optimisation

A decision maker has to usually deal with a number of objec-
tives to be optimised, for example, cost, environmental impact,
energy efficiency, etc. Multi-objective optimisation, offers a well-
founded framework for such problems, with a variety of different
approaches such as weighted sum method, goal programming
and �-constrained methods [10–12]. In the weighted sum method,
the decision maker evaluates the relative importance of each
objective function with different weighted coefficients and then
performs the optimisation by adding the weighted objective func-
tions together. Although this method can be characterised as com-
putationally efficient, since it generates strong non-inferior
solutions, the main disadvantages are the difficulty in the determi-
nation of the most adequate weighting coefficients for the prob-
lem, as well as the fact that it does not guarantee Pareto
optimality [13]. In goal programming, one sets targets for all the
objectives that appear in the MO2 problem and then seeks solu-
tions that are closest to the target they have already stated, with
the objective to minimise the deviation from the goals set. In the
�-constrained method, the optimisation is performed for one
objective function, i.e. the most preferred one, with the rest of
the objectives bounded between appropriate lower and upper
bounds [14,15].

In the MO2 framework, a DM solves a multi-criteria optimisa-
tion problem, and chooses between different alternatives acting
in pursuit of their own choice and as a result, the concept of
optimality in MO2 is replaced with what is known as ‘‘Pareto

optimality”. Energy systems are typical examples of systems in
which a performance index can conflict with an environmental
or financial restriction as seen in the recent work of Luo et al.
[16], where the multi-objective scheme was used for the synthesis
of utility systems over the financial cost, the environmental impact
and the maximisation of the exergy efficiency. A multi-objective
optimisation problem was formulated to account for both the envi-
ronmental impact and the economic efficiency of the system; the
authors solved the resulting MO2 problem with weighted sum
and �-constrained method. Zhang et al. [17] examined the optimal
design of CHP-based microgrids coupled with life cycle assessment
analysis.

1.3. Multi-objective optimisation under uncertainty

Klein et al. [18], proposed an interactive approach for solving
MO2 with uncertainty in the RHS of the technology matrix, based
on the concept of mutual efficiency. Kheawhom and Kittisupakorn
[19], proposed a two stage algorithm, in which the MO2 problem is
solved in the first step with a genetic algorithm and via a stochastic
modeller in the second step, where problem decomposition tech-
niques and sequential quadratic programming method are
employed to solve the subproblems. Kwak et al. [20] proposed a
new method for MO2 under uncertainty problems in energy con-
servation in commercial buildings, which included heuristics and
also insights from human subject studies. An improved multi-
objective teaching–learning based technique coupled with
stochastic optimisation was proposed by Niknam et al. [21], where
the authors deal with the operation of microgrids under uncer-
tainty. A stochastic multi-objective optimisation study for the opti-
mal operation of combined cooling, heating and power (CCHP)
systems was presented by in Hu and Cho [22]. The authors consid-
ered variations in climate conditions and three different objective
functions for the minimisation of operational cost, primary energy
usage and carbon dioxide emissions. Recently, Sabio [23] proposed
a systematic framework, including a multiscenario stochastic
MINLP, in order to handle uncertainty explicitly in MO2 problems
for LCA of industrial processes. In their approach even though the
uncertainty is considered explicitly, it is modelled as multiple

Nomenclature

Abbreviations
CR Critical Region
DM Decision Maker
LP Linear Programming
MINLP Mixed Integer Nonlinear Programming
MO2 Multi-Objective Optimisation
MO2U2 Multi-Objective Optimisation under Uncertainty
mp Multi-Parametric
RES Renewable Energy Sources
RHS Right Hand Side

Greek letters
/ uncertain parameter
w multi-objective parameter
h mp-MO2U2 parameter

Letters
F vector of objective functions
h vector of equality constraints

g vector of inequality constraints
x vector of decision variables

Sets
I set of objective functions
X set of decision variables
H set of mp-MO2U2 parameters
U set of uncertain parameters
W set of multi-objective parameters

Superscripts
nx dimension of decision variables
nh dimension of mp-MO2U2 parameters
n/ dimension of uncertain parameters
nw dimension of multi-objective parameters
lo lower bound
up upper bound
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