Applied Energy 184 (2016) 219-229

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

A study of structure–activity relationships of commercial tertiary amines for post-combustion CO₂ capture

AppliedEnergy

Min Xiao, Helei Liu*, Raphael Idem, Paitoon Tontiwachwuthikul, Zhiwu Liang*

Joint International Center for CO₂ Capture and Storage (iCCS), Hunan Provincial Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing CO₂ Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China

HIGHLIGHTS

• Ethyl group is beneficial for tertiary amines of CO₂ absorption.

• The existence of side carbon chain may promote the activity of tertiary amine.

• Hydroxyl group reduces the equilibrium CO₂ solubility, k₂ and pKa.

• Heterocyclic structure decrease the equilibrium CO_2 solubility, k_2 and pKa.

• Hydroxyl group results in higher CO₂ absorption heat.

ARTICLE INFO

Article history: Received 23 June 2016 Received in revised form 27 September 2016 Accepted 1 October 2016

Keywords: Carbon dioxide absorption Tertiary amines Structure-activity relationship CO₂ absorption rate Equilibrium solubility CO₂ absorption heat

ABSTRACT

This work examined the relationship between the structure of various commercial tertiary amines and their activity in CO_2 absorption/desorption in terms of rate of CO_2 absorption, equilibrium CO_2 loading, pKa and heat of CO_2 absorption in order to establish possible guidelines for selection of tertiary amine components for amine blends. Results show that any electron donating group linked directly to the nitrogen atom increases their reactivity with CO_2 . In addition, the presence of steric hindrance effect and good water solubility also show enhancements in activity. In contrast, the existence of a hydroxyl group leads to a decrease in all the activity of the tertiary amine. The heat of CO_2 absorption of tertiary amines, which is closely related to the regeneration energy, can be reduced by decreasing the number of hydroxyethyl groups or by positing the hydroxyl group at the proper carbon relative to the nitrogen atom.

© 2016 Published by Elsevier Ltd.

1. Introduction

Global warming poses one of the most serious global challenges, which may be blamed for disasters such as glacier melting, severe weather, storms and droughts. These make it necessary to prevent global warming and the rising average temperature. The contributor to global warming is greenhouse gas (GHG) emissions, and the most abundant GHG due to human activities is carbon dioxide (CO₂). With the rapid development of global economies, increasingly large amounts of fossil fuel is used especially for producing electricity and other forms of energy [1,2]. The large consumption of fossil fuel leads to the release of large amounts of CO₂ into air which leads to increasing concentration of CO₂ in the atmosphere. Since CO₂ has a stable chemical structure and

* Corresponding authors. E-mail addresses: lhl0925@hotmail.com (H. Liu), zwliang@hnu.edu.cn (Z. Liang).

http://dx.doi.org/10.1016/j.apenergy.2016.10.006 0306-2619/© 2016 Published by Elsevier Ltd. hardly reacts with other materials in the atmosphere to cause its decay, it is not possible to use natural means to cause its elimination. Consequently, it becomes necessary to find other efficient methods to either remove it from or prevent further emission into the atmosphere. One of the most mature technologies for capture of CO_2 to prevent its release into the atmosphere is post-combustion capture from large point industrial sources using chemical solvents such as aqueous amines.

A large number of amine-based solvents have been investigated for their performance in CO_2 absorption in terms of CO_2 absorption rate, CO_2 solubility and heat of regeneration. Monoethanolamine (MEA), diethanolamine (DEA) and N-methyldiethanolamine (MDEA) are examples of conventional primary, secondary and tertiary amines, respectively, which are commercially available and have been used as common absorbents in industrial CO_2 capture processes. However, there are still some drawbacks in their use as absorbents. Depending on the type, such drawbacks include

Nomenclature	
DMEA dimethylmonoethanolamine DEEA diethylmonoethanolamine TEA triethanolamine TREA triethylamine MDEA N-methyldiethanolamine	k_2 second-order reaction rate constant (m³/mol sTtemperature (K) P_{CO_2} CO_2 partial pressure α CO_2 loadingOreboiler duty
1DMA2P 1-dimethylamino-2-propanol 3DMA1P 3-dimethylamino-1-propanol 1-(2-HE)-PRLD 1-(2-hydroxyethyl)-pyrrolidine 1-(2-HE)-PP 1-(2-hydroxyethyl)-piperidine DEAB 4-diethylamino-2-butanol DEA-2P 1-diethylamino-2-propanol	$\begin{array}{llllllllllllllllllllllllllllllllllll$

amine losses caused by volatilization and degradation, high energy consumption for CO₂ regeneration, severe corrosion of pipes, low rates of absorption, etc. [3]. These problems increase the cost of CO₂ capture as well as affect the capture operation thereby tending to limit the usage of amines. According to Shakerian et al. [4], only a few solvents are available to facilitate the capture of CO₂ on a large scale. Thus, finding amines that show high CO₂ absorption rate and capacity, as well as requiring less energy for regeneration for industrial application is considered as a significant contribution which can improve post-combustion CO_2 capture [5]. In particular, primary and secondary amines have faster reaction rates with CO₂ than tertiary amines while tertiary amine shows higher solubility for CO₂ because of these amines use different reaction pathways when they react with CO₂. Also, tertiary amines are attractive as absorbents because they act as catalyst to solely generate bicarbonates instead of carbamates when they react with CO_2 [6–9] thereby resulting in low heat duty for solvent regeneration. The stoichiometric absorption of CO₂ for tertiary amines can reach 1 mol CO_2 /mol amine when the bicarbonate is formed with CO_2 while the stoichiometry of a single reaction that forms a carbamate for primary and secondary amines is limited to only 0.5 mol $CO_2/$ mol amine [10]. A new class of amines called sterically hindered amines has been shown to have high reaction rate with CO₂ as well as high CO₂ loading capacity. This is because the steric effect reduces the stability of carbamates formed by reaction of the amine with CO₂ [11,12]. As is well known, the cost for providing energy to regenerate rich amines takes roughly 70-80% of the operating cost of the CO₂ capture process [13], which makes regeneration energy consumption to be a vital obstacle for wide application of amine-based CO₂ capture [14,15]. The energy requirement for stripping is made up of three parts: heat of CO₂ desorption, water vaporization heat and sensible heat. For the MEA absorption system, the high CO_2 reaction heat with MEA (85.6 kJ/mol_{CO₂}) is related to the high energy requirement for stripping [16]. Although DEA shows a lower heat of reaction with CO_2 (76.3 kJ/mol_{CO₂}), but the energy required to break the stable carbon-nitrogen bond of carbamate is still huge [16]. However, because aqueous tertiary amine forms a bicarbonate instead, it is much easier to separate CO₂ from their rich amines with less energy requirement [17]. On the other hand, the low CO₂ absorption rate of tertiary amines is the main limitation for the application of tertiary amines as the sole solvent for industrial CO₂ absorption processes.

Currently, many efforts have been made on amine screening to figure out an ideal amine. According to Li et al. [18], a total of 1297 patents are involved in CO_2 capture as solid sorbents, solvents or membranes of which approximately 37.5% are solvents (involving novel solvents and mixed solvents) [18]. Most screening works require a large amount of experimental data as well as specialized apparatus to evaluate amine performance for CO_2 capture, which

can be time-consuming and requiring substantial material resources. Consequently, a pre-evaluation of amines for CO_2 capture is very necessary in order to determine the potential commercial amine components for blending or for synthesis of novel amines. This pre-evaluation method should be established with guidelines that relate an amine performance to its molecular structure.

Extensive research has been conducted to study the characteristics of absorbents. According to Chakraborty et al. [19], the methyl group substitution at the α carbon changes the electronic environment of nitrogen. The interaction of π and π^* methyl group orbitals with the nitrogen lone-pair orbital decreases the charge at the donor site, nitrogen, which makes it a softer base thereby weakening the N–H bond of the amine [19]. Puxty et al. [20] screened amines with good performance for CO₂ absorption capability from 76 novel amines. This author pointed out that a hydroxyl group within 2 or 3 carbons of the nitrogen while it is free to move improves the capability of CO₂ absorption. It has been suggested that a stable intramolecular hydrogen bond exists between nitrogen and the hydroxyl group to form a five or six member ring structure, thereby destabilizing the formation of the carbamate. and resulting in higher CO₂ absorption ability [20]. Singh et al. showed structure-activity relationships for amine-based CO₂ absorbents which takes into account the effect of chain length, side chain, and number of functional groups. Much of the research has mainly focused on primary and secondary amines [21,22]. Chowdhury et al. screened tertiary amine-based CO₂ absorbents (i.e. dimethylamino-2-propanol (1DMA2P), diethylamino-2-propanol (DEA-2P), dimethylethanolamine (DMEA), etc.) with respect to absorption/desorption rates, vapor-liquid equilibrium and heat of reaction from twenty-five tertiary amines [23]. Accordingly, there exists a relationship between amine molecular structure and CO₂ absorption activity. Terrence and Donaldson [6] provided a mechanism for tertiary amine reacting with CO₂ where the pair of unshared electrons on the nitrogen atom enables the amine to act as general base catalysts for other reactions (Fig. 1). Therefore, it is clear that chain length, existence of functional groups, and position of the functional group in the amine determine the activity of the amine in reacting with CO₂ by changing the electronic environment of the nitrogen atom.

Fig. 1. Base catalysis mechanism for tertiary amine solvents reacting with CO2.

Download English Version:

https://daneshyari.com/en/article/4916865

Download Persian Version:

https://daneshyari.com/article/4916865

Daneshyari.com