Applied Energy 184 (2016) 574-593

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Modeling energy efficiency to improve air quality and health effects of China's cement industry

Shaohui Zhang ^{a,b,*}, Ernst Worrell ^a, Wina Crijns-Graus ^a, Maarten Krol ^c, Marco de Bruine ^c, Guangpo Geng ^d, Fabian Wagner ^b, Janusz Cofala ^b

^a Copernicus Institute of Sustainable Development, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

^b International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria

^c Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

^d Academy of Disaster Reduction and Emergency Management, MOCA/MOE, Beijing Normal University, Beijing 100875, China

HIGHLIGHTS

• An integrated model was used to model the co-benefits for China's cement industry.

• PM_{2.5} would decrease by 2–4% by 2030 through improved energy efficiency.

• 10,000 premature deaths would be avoided per year relative to the baseline scenario.

• Total benefits are about two times higher than the energy efficiency costs.

ARTICLE INFO

Article history: Received 20 April 2016 Received in revised form 28 September 2016 Accepted 14 October 2016 Available online 26 October 2016

Keywords: Co-benefits Energy efficiency Air quality Health effects Cement industry China

ABSTRACT

Actions to reduce the combustion of fossil fuels often decrease GHG emissions as well as air pollutants and bring multiple benefits for improvement of energy efficiency, climate change, and air quality associated with human health benefits. The China's cement industry is the second largest energy consumer and key emitter of CO₂ and air pollutants, which accounts for 7% of China's total energy consumption, 15% of CO₂, and 14% of PM_{2.5}, respectively. In this study, a state-of-the art modeling framework is developed that comprises a number of different methods and tools within the same platform (i.e. provincial energy conservation supply curves, the Greenhouse Gases and Air Pollution Interactions and Synergies, ArcGIS, the global chemistry Transport Model, version 5, and Health Impact Assessment) to assess the potential for energy savings and emission mitigation of CO₂ and PM_{2.5}, as well as the health impacts of pollution arising from China's cement industry. The results show significant heterogeneity across provinces in terms of the potential for $PM_{2.5}$ emission reduction and $PM_{2.5}$ concentration, as well as health impacts caused by PM_{2.5}. Implementation of selected energy efficiency measures would decrease total PM_{2.5} emissions by 2% (range: 1–4%) in 2020 and 4% (range: 2–8%) by 2030, compared to the baseline scenario. The reduction potential of provincial annual PM_{2.5} concentrations range from 0.03% to 2.21% by 2030 respectively, when compared to the baseline scenario. 10,000 premature deaths are avoided by 2020 and 2030 respectively relative to baseline scenario. The provinces of Henan and Hubei account for 43% of total avoided premature deaths, followed by Chongqing (9%) and Shanxi (10%), respectively. If only considering the energy saving benefits, 37% of energy efficiency measures are not cost effective. However, the co-benefits (including energy saving, CO₂ reduction, and health benefits) are about two times higher than the costs of energy efficiency measures. Hence, this study clearly demonstrates that simultaneous planning of energy and air quality policies creates a possibility of increasing economic efficiency in both policy areas. © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Air pollution due to massive use of fossil fuels has received considerable attention in recent years [1–3]. The World Health Organization (WHO) estimates that about one million premature deaths are caused by outdoor air pollution in the world each year, with

AppliedEnergy

E-mail addresses: s.zhang@uu.nl (S. Zhang), e.worrell@uu.nl (E. Worrell), W.H.J.Graus@uu.nl (W. Crijns-Graus), M.C.Krol@uu.nl (M. Krol), M.deBruine@uu.nl (M. de Bruine), gengguangpo@163.com (G. Geng), wagnerf@iiasa.ac.at (F. Wagner), cofala@iiasa.ac.at (J. Cofala).

Nomenclature

WHO	World Health Organization	
$PM_{2.5}$	fine particulate matter with a diameter smaller than	
210	2.5 μm	
GHGs	greenhouse gases	
BC	Black Carbon	
OC	Organic Carbon	
VOC	volatile organic compounds	
CEV	cerebrovascular disease	
IHD	ischemic heart disease	
MESSAGE The Model for Energy Supply Strategy Alternatives and		
	their General Environmental Impact	
GAINS	The Greenhouse Gases and Air Pollution Interactions	
GAINS		
	and Synergies	
UKIAM	the UK integrated assessment model	
SIRMOD		
GIS	geographical information system	
LCA	life cycle assessment	
SFA	substance flow analysis	
ADM	air dispersion modeling	
HIA	health impact assessment	
MCDA	Multi-Criteria Decision Analysis	
CMAQ	Community Multiscale Air Quality	
BenMAP	the environmental Benefits Mapping and analysis	
	Program	
ECSC	Energy Conservation Supply Curves	
IIASA	International Institute for Applied Systems Analysis	
USEPA	the United States Environmental Protection Agency	
	emission prediction and policy analysis model with	
	health effects	
AirQUIS		
TM5	the global chemistry Transport Model, version 5	
TM	Tracer Model	
TM5-FASST TM5 with fast scenario screening tool		
ECMWF	the European Centre for Medium Range Weather	
	Forecast	
IPCC	Intergovernmental Panel on Climate Change	
AR5	Fifth Assessment Report	
HIA	health impact assessments	
YOLL	Years Of Life Lost	
DALY	Disability Adjusted Life Years	
PAF	the population-attributable fraction	
C-R	concentration-response	
COPD	chronic obstructive pulmonary disease	
IHD	ischemic heart disease	
VOSL	the value of a statistical life	
WTP	willingness to pay	
COI	cost of illness	
BTA	the benefit transfer approach	
	World Energy Outlook	
WEO	World Energy Outlook	

	IEA	International Energy Agency
	SCC	social cost of carbon
	MIIT of C	China Ministry of Industry and Information Technology of China
	LBNL	Lawrence Berkeley National Laboratory
		ina Energy Research Institute of China
		World Business Council for Sustainable Development
		hina Ministry of Environmental Protection of China
	CVD	cardiovascular disease
	LC	lung cancer disease
	RD	disease of the respiratory system
	BL	baseline scenario
	EEPTP	Energy Efficiency Policy with technical energy saving potential scenario
	AEEI	annual autonomous energy efficiency improvement
	NSP	new suspension preheater
	Symbols	
	CCE	cost of conserved energy
	Ι	investment
	AF	annuity factor
	Μ	annual change in operation and maintenance costs
	E	annual energy saving potential
	Р	energy price
	d	discount rate
	n	lifetime of the energy efficiency measures
	E _{i,p}	emissions of pollutant p (for BC, OC, VOC, CO, and dust)
		in county i
	A _{i,k}	activity level of type k (e.g., fuel consumption, produc- tion of cement/clinker in cement plants) in county i
	$ef_{i,k,p}$	emission factors of pollutant p for activity k in county i.
	ΔY	the change of mortality/morbidity rate
	$\alpha_{2010,>30a}$	
		cohort at the base year (2010)
	HR	the Hazard ratio for an increase in PM _{2.5} concentration
		of $10 \mu\text{g/m}^3$
	ΔC	the changes of $PM_{2.5}$ concentration under different
	D	scenarios
	P	the affected population the VOSL of the wear i (2020 and 2020)
	VOSL _i	the VOSL of the year i (2020 and 2030)
		the VOSL of the year 2010
	I ₂₀₁₀	the personal income of the year 2010 the personal income of the year i
	l _i e	the personal income elasticity.
	L L	the personal medine clasticity.
Subscript		
	i, k, p	county, activity type, pollutant, respectively.
	1, K, P	country, activity type, pointiant, respectively.

fine particulate matter with a diameter smaller than $2.5 \,\mu m$ (PM_{2.5}) as one of the prominent contributors [4,5]. Based on the database of global burden of disease, Lelieveld et al. [6] found that PM_{2.5} related mortality in 2010 was 3.15 million people per year worldwide (1.61–4.81 million death per year at 95% confidence interval), with cerebrovascular disease (CEV) accounting for 42% (1.31 million) of total premature deaths and 34% (1.08 million) due to ischemic heart disease (IHD) [6]. The study also found that the contribution of outdoor air pollution to premature death would double (6.6 million) by 2050 in a business-as-usual scenario [6]. In 2013, an estimated 0.26 million premature deaths in 31 Chinese capital cities could be linked to PM_{2.5} air pollution. The study also

found that if the annual PM_{2.5} concentration meets the Air Quality Guidelines set by Chinese government standards, the mortality rate could be decreased by 0.41%, compared to 2013 [7]. During the period of April 5, 2014 and August 5, 2014, China's population-weighted exposure to PM_{2.5} was 52 µg/m³, which led to about 1.6 million deaths per year (0.7–2.2 million deaths per year at 95% confidence interval). The diseases of Ischemic heart, lung cancer and strokes accounted for 17% of total number of deaths in China, together [8]. Therefore, the Chinese government released the national action plan on air pollution control. In this strategy, \$290 billion (1.75 trillion yuan) has been invested between 2013 and 2017, of which the industry will absorb 36.7%

Download English Version:

https://daneshyari.com/en/article/4916893

Download Persian Version:

https://daneshyari.com/article/4916893

Daneshyari.com