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a b s t r a c t 

We study the estimation of the true variance of the predictor in stochastic Kriging 

(SK). First, we obtain macroreplications for a SK metamodel that approximates a single- 

server simulation model; these macroreplications give independently and identically dis- 

tributed predictions. This simulation may use common random numbers (CRN). From these 

macroreplications we conclude that the usual plug-in estimator of the variance signifi- 

cantly underestimates the true variance. Because macroreplications of practical simulation 

models are computationally expensive, we next formulate two bootstrap methods that use 

a single macroreplication: (i) a distribution-free method that resamples simulation repli- 

cations (within the single macroreplication), and (ii) a parametric method that assumes 

a Gaussian distribution for the SK predictor, and estimates the (hyper)parameters of that 

distribution from the single macroreplication. Altogether we recommend distribution-free 

bootstrapping for the estimation of the SK predictor variance in practical simulation ex- 

periments. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In practice, the final goal of simulation is often sensitivity analysis and optimization of the simulated real system. For 

this goal, the simulation analysts often use a metamodel – also called an emulator or a surrogate – which is a model of the 

underlying simulation model; i.e., it is an explicit simple approximation of the input/output (I/O) function that is implicitly 

defined by the simulation model. There are many types of metamodels; see Kleijnen [12, p. 10] . We, however, focus on 

Kriging – also called Gaussian process (GP) – metamodels. These metamodels have already acquired a track record in de- 

terministic simulation, and are becoming popular in random (stochastic) simulation – including discrete-event simulation 

– which transforms a stream of pseudo-random numbers (PRN) into an output. Kriging in stochastic simulation is called 

stochastic Kriging (SK); see the classic paper Ankenman et al. [2] , recent papers such as Barton et al. [3] , Bekki et al. [4] , 

Chen and Kim [6] , Plumlee and Tuo [16] , Qu and Fu [17] , and Sun et al. [21] , and the many more references in Kleijnen [12, 

pp. 206–211] . 

Common random numbers (CRN) are a popular variance-reduction technique that may improve the statistical analysis of 

the simulation I/O data in sensitivity analysis and optimization; see Law [13, pp. 586–604] . However, CRN also complicate 

this analysis when using SK; see Chen et al. [5] . 

In practice, the (hyper)parameters of the GP are unknown, so they are estimated. Using these estimated parameters 

makes the linear GP predictor nonlinear (see (8) below), so it is difficult to estimate the variance of this predictor. Many 

GP publications simply plug-in the estimated parameters into the formulas that assume known parameters. Obviously, this 
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plugging-in does not give the true variance of the predictor. We focus on the problem of correctly estimating the true 

variance of the predictor that uses SK with estimated Kriging parameters. The fundamental reference Abt [1] proposes a 

quite simple analytic approximation assuming an exponential correlation function for the so-called extrinsic noise and a 

constant (homogeneous) variance for the intrinsic noise (these two types of noise are defined below (1) ). Recently Thiart 

et al. [23] compared five estimators of the predictor variance, using Abt’s [1] assumptions. We, however, propose well-known 

bootstrapping methods (for which ample software is available; see Section 2 ) that allows any type of correlation function 

for the intrinsic noise (but we present numerical results only for the correlation function that is most often assumed in SK; 

namely, a Gaussian correlation function) and intrinsic noise with heterogeneous variances and possible correlations caused 

by CRN. Simamora et al. [20] compares our parametric bootstrapping with semiparametric bootstrapping in deterministic 

simulation. A more general class of problems including our problem is discussed in Harville [10] . 

In our paper we investigate the following three methods for estimating the variance of the SK predictor: (i) macrorepli- 

cations, (ii) distribution-free bootstrapping (DB), and (iii) parametric bootstrapping (PB). We illustrate and evaluate these 

three methods through experiments with a waiting-time simulation model; namely, a single-server discrete-event simula- 

tion model with independent exponential interarrival and service times, known as the M/M/1 model. For details on the 

simulation of this model we refer to Law [13, pp. 73–77, 102–108] . 

We organize and summarize the rest of this paper as follows. In Section 2 we summarize SK. In Section 3 we first 

describe an M/M/1 simulation experiment, and then explain how macroreplications provide an unbiased estimator of the 

predictor variance; we find that this estimator is significantly higher than the plug-in estimator – without or with CRN. In 

Section 4 we detail DB, and find that DB is a relatively quick and easy method for estimating the true variance when CRN 

are applied. In Section 5 we detail PB, and find that PB gives a higher estimate than DB does. In Section 6 we summarize 

our conclusions; namely, DB gives a fast and relatively good estimator of the predictor variance in practical simulation 

experiments. 

2. Stochastic Kriging 

SK assumes that the simulation output (say) w is stochastic. Notice that unlike most authors on SK, we do distinguish 

between w (simulation output) and y (metamodel output). Furthermore, we use Greek letters to denote unknown parame- 

ters, and bold upper-case letters for matrixes and bold lower-case letters for vectors. The simplest type of SK assumes the 

following metamodel: 

y r (x ) = μ + M(x ) + ε r (x ) with x ∈ R 

k and r = 1 , . . . , m i , (1) 

where we use the following symbols. We let μ denote the constant mean E [ y ( x)] where x is an input combination or ‘point’ 

in the given k -dimensional experimental area R 

k . Ankenman et al. [2] – the classic paper on SK – defines the so-called 

extrinsic noise M ( x ) as the additive noise that forms a Gaussian (multivariate normal) stationary process with zero mean 

and covariance matrix �M 

(by definition, a stationary process has a constant mean, a constant variance, and covariances 

that depend only on the distance between the points x and x ′ ). Because stochastic simulation has noisy outputs, we should 

obtain replications ; i.e., identically independently distributed (IID) simulation outputs. Ankenman et al. [2] defines the intrinsic 

noise ε r ( x ) as having a Gaussian distribution with zero mean and variance Var[ ε( x )] and being independent of the extrinsic 

noise M ( x ). We let m i denote the number of replications if x = x i so the subscript r runs from 1 to m i . We let �ε denote 

the covariance matrix of ε. So, if the simulation does not use CRN, then �ε is diagonal with the elements Var[ ε( x )] on the 

main diagonal. If the simulation does use CRN, then �ε is not diagonal; obviously, �ε should still be symmetric and positive 

definite. 

Note: The SK model defined in (1) – but without intrinsic noise – is known as ordinary Kriging (OK). A more general 

Kriging model replaces the constant μ in (1) by a prespecified low-order polynomial in x ; this Kriging is known as universal 

Kriging (UK). If UK specifies (say) a first-order polynomial in x , then UK requires the estimation of the k effects β j ( j = 

1 , . . . , k ), besides β0 or μ in OK. The estimation of these k extra parameters may explain why in practice UK often does not 

give better predictions; also see Tajbakhsh et al. [22] . In this paper we focus on estimating the predictor variance in SK with 

a constant mean μ. 

Averaging the m i replications gives the average metamodel output y (x i ) and average intrinsic noise ε (x i ) , so (1) is re- 

placed by 

y (x i ) = μ + M(x i ) + ε (x i ) with x i ∈ R 

k and i = 1 , . . . , n, (2) 

where n denotes the number of so-called old simulated points. If we do not use CRN, then �ε is a diagonal matrix with 

main-diagonal elements Var[ ε( x i )]/ m i . If we do use CRN and m i is a constant m , then �ε = �ε / m . Notice that x i = ( x i ; j ) 

with j = 1 , . . . , k and k defined below (1) , so X 

′ = (x 1 , . . . , x n ) is a k × n matrix; X is the so-called design matrix. 

Note: In this paper we focus on estimating the predictor variance in SK – given a design matrix X ; i.e., we do not discuss 

the optimal choice of X . For that choice we refer to the literature; e.g., Zimmerman [26] distinguishes between (i) a design 

that gives an ‘optimal’ Kriging predictor while assuming that the extrinsic covariance matrix �
M 

is known, (ii) a design 

that gives an ‘optimal’ estimator of this matrix �M 

, and (iii) a hybrid design that balances the design objectives (i) and (ii). 

Zimmerman [26, p. 651] assumes OK, not UK. Our M/M/1 example has a single input (so k = 1) – namely, the traffic rate x –

and we simulate n = 11 equispaced traffic rates x i between 0.10 and 0.90 (as detailed in Section 3 ); our design for the M/M/1 
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