#### Applied Energy 181 (2016) 179-209

Contents lists available at ScienceDirect

**Applied Energy** 

journal homepage: www.elsevier.com/locate/apenergy

# Heat transfer in hcci phenomenological simulation models: A review

# N.P. Komninos\*, C.D. Rakopoulos

Internal Combustion Engines Laboratory, School of Mechanical Engineering, National Technical University of Athens (NTUA), 9 Heroon Polytechniou St, Zografou Campus, 15780 Athens, Greece

#### HIGHLIGHTS

• Conventional heat transfer correlations are inadequate for HCCI combustion.

• Single-zone heat transfer is inherently coupled to ignition and combustion.

• The main difficulty is the difference between mean-gas and local max temperature.

• Multi-zone models should use a control volume approach near the cylinder wall.

• Inter-zonal and wall heat transfer should be coupled.

#### ARTICLE INFO

Article history: Received 17 May 2016 Received in revised form 9 August 2016 Accepted 11 August 2016

Keywords: HCCI Heat transfer Temperature field Simulation models Single-zone model Multi-zone model

### ABSTRACT

This study presents a review of the heat transfer treatment in HCCI phenomenological simulation models, including single-zone and multi-zone ones. Heat transfer within the combustion chamber is significant when modeling the internal combustion engine in general and the HCCI combustion process in particular. It determines to a great extent the temperature field within the combustion chamber throughout the engine operating cycle, and especially during compression and combustion. In HCCI engines, combustion relies upon the auto-ignition of a premixed charge that is present for most—if not all—of the compression stroke. In this combustion mode the heat transfer process directly affects mean gas and local temperatures, thereby influencing ignition timing, combustion rate and the formation of HC, CO and NO<sub>x</sub> emissions. The success of any simulation model in describing or predicting the HCCI combustion process and emissions formation evidently depends partly on its ability to reliably predict the heat transfer phenomena involved.

Despite the importance of the heat transfer process in HCCI simulation, little progress has been made in the past years, compared to the advances that have been achieved experimentally. Moreover, the information regarding phenomenological heat transfer treatment is scattered. The aforementioned provided the motivation for this review that provides initially a critical outlook on the heat transfer correlations that were derived for conventional combustion modes, since these correlations have been—and are still—used frequently in HCCI simulation models. The underlying assumptions of these correlations and the conditions under which they were validated are explicitly stated, in order to appraise their suitability in HCCI phenomenological simulations. Heat transfer treatment in single-zone and multi-zone models is presented subsequently, including HCCI-specific correlations that have been developed in the past years. Issues such as zone configuration, wall heat transfer correlations based on global or local gas properties, and inter-zonal heat transfer are discussed. Moreover, comparative studies that evaluate the relative effectiveness of different correlations are presented. The study concludes with general remarks on phenomenological heat transfer simulation and with suggestions for further research.

© 2016 Elsevier Ltd. All rights reserved.

\* Corresponding author. *E-mail address:* nkom@central.ntua.gr (N.P. Komninos).





CrossMark

AppliedEnergy

| Nomen                            | nclature                                                           |         |                                             |
|----------------------------------|--------------------------------------------------------------------|---------|---------------------------------------------|
| a, a'                            | heat transfer constants                                            | g       | gas                                         |
| A                                | area (m <sup>2</sup> )                                             | g<br>i  | any zone                                    |
| b                                | heat transfer constant                                             | j       | any location on the combustion chamber wall |
| D                                | cylinder bore (m)                                                  | Ĭ       | laminar                                     |
| C, c, c <sub>1</sub> ,           | c <sub>2</sub> heat transfer constants                             | mot     | motoring                                    |
| $C_f$                            | combustion factor                                                  | n       | normal                                      |
| $C_u$                            | characteristic velocity coefficient                                | out     | outflow                                     |
| h                                | heat transfer coefficient (W/m <sup>2</sup> K), molar specific en- | r       | reference                                   |
|                                  | thalpy (kJ/kmol)                                                   | rad     | radiation                                   |
| k                                | thermal conductivity (W/m K)                                       | t       | turbulent                                   |
| L                                | characteristic length (m)                                          | tot     | total                                       |
| m                                | mass (kg)                                                          | W       | wall                                        |
| Р, р                             | pressure (Pa)                                                      | ••      |                                             |
| i, p<br>ģ                        | heat flux $(W/m^2)$                                                | Cumoro  | ninto                                       |
| ų<br>Q <sub>g</sub>              | gross heat release rate (W)                                        | Superso | characteristic value                        |
| Q <sub>g</sub><br>Q <sub>n</sub> | net heat release rate (W)                                          | *       |                                             |
| $\dot{Q}_w$                      | wall heat loss rate (W)                                            | +       | dimensionless value                         |
| $Q_w$<br>$Q_i$                   | net heat gained by zone i (kJ)                                     |         |                                             |
|                                  | distance (m)                                                       | Dimens  | cionless numbers                            |
| r<br>T                           |                                                                    | Nu      | Nusselt number                              |
| T                                | (absolute) temperature (K)                                         | Pr      | Prandtl number                              |
| t                                | thickness (m)                                                      | Re      | Reynolds number                             |
| и                                | velocity (m/s)                                                     |         |                                             |
| $u_f$                            | flow velocity factor                                               | Abbrev  | iations                                     |
| $\bar{u}_p$                      | mean piston speed (m/s)                                            | AF      | air-fuel ratio                              |
| U                                | internal energy (J)                                                | CA      | crank angle                                 |
| V                                | volume (m <sup>3</sup> )                                           | CFD     | computational fluid dynamics                |
| у                                | distance (m)                                                       | CFR     | cooperative fuel research                   |
| W                                | work (J)                                                           | CI      | compression-ignition                        |
| Ζ                                | number of zones                                                    | CR      |                                             |
|                                  |                                                                    | CV      | compression ratio                           |
| Greek                            |                                                                    |         | control volume                              |
| $\eta_{sc}$                      | scavenging efficiency (–)                                          | DI      | direct injection                            |
| $\theta$                         | angle                                                              | DICI    | direct injection compression-ignition       |
| κ                                | von Kármán constant (=0.41)                                        | EGR     | exhaust gas recirculation                   |
| λ                                | air-fuel equivalence ratio                                         | EVO     | exhaust valve opening                       |
| μ                                | dynamic viscosity (kg/(m s))                                       | HC      | (unburned) hydrocarbons                     |
| μ<br>V                           | kinematic viscosity (m <sup>2</sup> /s)                            | HCCI    | homogeneous charge compression ignition     |
|                                  | density (kg/m <sup>3</sup> )                                       | HRR     | heat release rate                           |
| $ ho \sigma$                     | Stefan–Boltzman constant $5.67 \cdot 10^{-8} (W/(m^2 K^4))$        | IMEP    | indicated mean effective pressure           |
|                                  | fuel-air equivalence ratio                                         | IVC     | inlet valve closing                         |
| $\phi$                           |                                                                    | MZ      | multi-zone                                  |
| ω                                | angular velocity (rad/s)                                           | NA      | naturally aspirated                         |
|                                  |                                                                    | NG      | natural gas                                 |
| Subscripts                       |                                                                    | QLT     | qualitative                                 |
| bl                               | boundary layer                                                     | QNT     | quantitative                                |
| cl                               | coolant                                                            | RG      | reformer gas                                |
| cr                               | crevice                                                            | SC      | supercharged                                |
| cyl                              | cylinder                                                           | SI      | spark-ignition                              |
| ď                                | displacement                                                       | SZ      | single-zone                                 |
| f                                | flow                                                               | TDC     | top dead center                             |
|                                  |                                                                    |         |                                             |

## Contents

| 1  | Introduction                                                                                | 181 |
|----|---------------------------------------------------------------------------------------------|-----|
|    |                                                                                             |     |
| 2. | Heat transfer correlations used in conventional engines 1                                   | 183 |
| 3. | Heat transfer in single-zone HCCI models                                                    | 185 |
|    | 3.1. HCCI single-zone simulation studies with heat transfer                                 | 187 |
|    | 3.2. Comparative study of heat transfer correlations implemented in single-zone HCCI models | 189 |
|    | 3.3. Remarks on HCCI single-zone heat transfer simulation 1                                 | 189 |
| 4. | Heat transfer description in multi-zone HCCI models 1                                       | 190 |
|    | 4.1. Multi-zone HCCI models without inter-zonal heat transfer 1                             | 191 |
|    | 4.2. Multi-zone HCCI models with inter-zonal heat transfer                                  | 196 |
|    | 4.2.1. Multi-zone models with loose coupling of wall and inter-zonal heat transfer          | 196 |
|    | 4.2.2. Multi-zone models that couple wall and inter-zonal heat transfer                     | 202 |

Download English Version:

# https://daneshyari.com/en/article/4917150

Download Persian Version:

https://daneshyari.com/article/4917150

Daneshyari.com