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This paper develops and assesses the performance of a short-term demand response (DR) model for util-
ity load control with applications to resource planning and control design. Long term response models
tend to underestimate short-term demand response when induced by prices. This has two important con-
sequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand
management program development. Second, when DR is not overlooked, the open-loop DR control gain
estimate may be too low. This can result in overuse of load resources, control instability and excessive
price volatility. Our objective is therefore to develop a more accurate and better performing short-
term demand response model. We construct the model from first principles about the nature of thermo-
static load control and show that the resulting formulation corresponds exactly to the Random Utility
Model employed in economics to study consumer choice. The model is tested against empirical data col-
lected from field demonstration projects and is shown to perform better than alternative models com-
monly used to forecast demand in normal operating conditions. The results suggest that (1) existing
utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high
renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the
loop on real-time prices.
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1. Introduction

In 2003 Economics Nobel Laureate Vernon Smith published an
editorial with Lynne Kiesling in the Wall Street Journal [1] summa-
rizing the consensus in the wake of the California Electricity crisis.
In their view the crisis was in part precipitated by the lack of cus-
tomer engagement in electricity pricing mechanisms [2]. Reflecting
on the technical and regulatory supply-side response to the crisis,
they wrote “What is inadequately discussed, let alone motivated, is
the [other] option - demand response”. It is now widely accepted
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that demand response can mitigate the market power of energy
suppliers. More importantly, demand response presents a real
opportunity for improvement in electricity planning and opera-
tions. Research on short-term demand response in particular has
increased as the growth of intermittent wind and solar resources
further exacerbates the problem of managing the balance between
supply and demand in power systems [3].

Historically, demand response programs have taken the form of
so-called “demand side management” (DSM) activities. DSM seeks
to alter electricity demand load shapes to make them better match
the available supply and reduce load peaks so as to defer costly
capacity expansion investments. Traditional DSM programs
include increased building and appliance efficiency standards, as
well as equipment replacement/retrofit programs.
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Load shifting has also long been recognized as a second
approach to modulate demand response. Whereas traditional
energy efficiency programs aim to reduce overall consumption,
load shifting focuses specifically on changing the time of day when
energy is used in order to favor times when costs are lower. Pro-
grams that focus on load shifting typically require mechanisms
such as time-of-use (TOU) pricing or real-time pricing to induce
transient changes in consumer behavior, such as those described
by Vardakas [4]. TOU and seasonal rates focus on the customer’s
response to simple static price signals [5]. The Electric Power
Research Institute (EPRI) carried out a major study of the top five
experiments in the United States in the early 1980s and concluded
that consumers responded to higher prices by shifting some of
their load to off-peak periods [G]. Later experiments produced sim-
ilar results. The City of Anaheim Public Utilities conducted a resi-
dential dynamic pricing experiment and found that for a peak-
time rebate of $0.35/kW h they could reduce electricity use by
12% during critical-peak days [7]. California’s Advanced Demand
Response System pilot program used a critical peak pricing (CPP)
tariff using the GoodWatts system to obtain peak reductions as
high as 51% on event days with a CPP rate and 32% on non-event
days with TOU rate. Enabling technology was identified as an
important driver for load reductions [8]. This observation was also
made in the Olympic Peninsula Project, where both TOU and real-
time price (RTP) tariff were tested [9]. Similar results over a large
number of studies have been widely reported and are summarized
in a survey published by Faruqui et al. [8].

Since the introduction of homeostatic utility control by Sch-
weppe et al. [10], it has been understood that key system state
variables such as frequency and voltage in large-scale interconnec-
tions could be regulated using price signals. Prices have since been
used primarily to schedule and dispatch generation resources
using power markets [11]. Both energy efficiency programs and
time-of-use rates have consistently been shown to effectively
reduce loads on time-scales greater than one hour [12].

To avoid unfair pricing in the presence of demand response,
David et al. [13] and later Kirschen et al. [14] examined how the
elasticity of demand could be considered in wholesale scheduling
systems. Initial work applying market-based mechanisms to build-
ing control systems showed that the notion of market-based
demand control was feasible and effective for more granular sys-
tems [15]. The general concept of transactive control was initially
proposed [16,17] as a method of coordinating very large numbers
of small resources using market-like signals at the electricity distri-
bution level. The theory is essentially the same as for wholesale
markets. However, realizations can be quite different insofar as
more frequently updated price signals are typically used to manage
distribution system constraints such as feeder capacity limits.
These prices can dispatch both distributed generation, energy stor-
age and demand response resources at much higher temporal and
physical granularity than is possible with wholesale markets.

A number of previous studies have considered the operational
impact of using retail price signals for controlling load in electric
power systems. Glavitsch et al. [18] showed that nodal pricing
could find a socially optimal operating point for power markets.
Following up on this work Alvarado [19] considered the question
of whether power systems could be controlled entirely using
prices, and found that price signals could indeed work. But the
results came with some caveats, the most significant of which is
the question of stability of the feedback control over the entire
system.

The feasibility of transactive control methods has been proven
out through a number of field demonstrations of automated dis-
tributed generation. The 2007 Olympic Peninsula demonstration
[20] and the 2013 Columbus Ohio demonstration [21] are two

examples of demand response control systems that dispatch
distribution-level resources in quasi real-time using price signals.
These experiments yielded a trove of high-resolution data about
the behavior of load resources in response to short-term price
variations.

Overall, two important lessons have been learned from decades
of utility research, development, and field experimentation with
demand response [4]:

1. Consumer interest and sustained participation is essential to
the success of demand response programs. Too many programs
showed too little consumer interest and participation. This
drives up program costs and reduces effectiveness. Tools to
keep customers engaged and responsive to utility priorities
are needed. Substantive contract diversity and meaningful
incentives need to be available for customers to choose and
actively engage in programs.

2. Programs should not provide rewards and incentives on the
basis of complex baseline or reference models. Mechanisms
that provide or enable endogenous sources of counter factual
prices and quantities should be preferred by utilities.

Although transactive systems are similar to wholesale markets,
the price signals are applied to different resources, affect consumer
needs differently and are applied at much higher temporal and
physical granularity than is possible in wholesale markets. Short-
term consumer response to price variations is also understood to
be quite distinct from long-term demand response. Long-term
demand response is typically associated with changes in consumer
behavior and the conversion to more energy efficient houses and
appliances.

On the other hand, short-term demand response is primarily in
the form of time-shifting and often requires automation. Short
term demand response can be very different from long-term
demand response because controllable load resources can be
quickly exhausted, leading to control saturation. As a result, short
and long term consumer responses are not generally comparable.
In practice, long-term demand response models tend to underesti-
mate the magnitude of the controllable resources and overestimate
their endurance [20,21]. This has two important consequences: (i)
Planning studies tend to undervalue the potential contribution of
short-term demand response system and is often overlooked in
utility program development; and (ii) when it is not overlooked,
the open-loop control gain is underestimated, resulting in over-
control, instability and excessive price volatility.

The lack of solid theoretical basis for short-term performance
claims has emerged as a significant challenge [22,23]. Using static
long-term own-price elasticities can be expected to give rise to
erroneous short-term demand response control because short-
term elasticities are more often substitution elasticities where
the substitute is obtained in time rather than by an alternative pro-
duct, a distinction which was made evident by Fan’s study of Aus-
tralian price elasticities [24], among others. Own-price elasticities
represent averages over long periods of time. These averages
may fail to capture the magnitude and variability possible at any
given time. For example, Reiss and White [25] developed a house-
hold electricity demand model for assessing the effects of rate
structure change in California and found that a small fraction of
households respond to the price changes with elasticities range
as large as —2, which far exceeds the average long-term elasticity
of —0.14 found in Faruqui’s survey of DR programs [12]. Unfortu-
nately, computing the elasticity of demand for short-term demand
response to real-time prices has proved challenging because the
counterfactual price and demand are difficult to determine in the
absence of a short-term feedback signal that elucidates the loads’
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