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h i g h l i g h t s

� 54.9% of the annual global irradiance is composed by its diffuse part in HK.
� Hourly diffuse irradiance was predicted by accessible variables.
� The importance of variable in prediction was assessed by machine learning.
� Simple prediction equations were developed with the knowledge of variable importance.
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a b s t r a c t

The paper studies the horizontal global, direct-beam and sky-diffuse solar irradiance data measured in
Hong Kong from 2008 to 2013. A machine learning algorithm was employed to predict the horizontal
sky-diffuse irradiance and conduct sensitivity analysis for the meteorological variables. Apart from the
clearness index (horizontal global/extra atmospheric solar irradiance), we found that predictors including
solar altitude, air temperature, cloud cover and visibility are also important in predicting the diffuse com-
ponent. The mean absolute error (MAE) of the logistic regression using the aforementioned predictors
was less than 21.5 W/m2 and 30 W/m2 for Hong Kong and Denver, USA, respectively. With the systematic
recording of the five variables for more than 35 years, the proposed model would be appropriate to esti-
mate of long-term diffuse solar radiation, study climate change and develope typical meteorological year
in Hong Kong and places with similar climates.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Solar irradiance data are crucial to the active solar energy facil-
ities [1] and passive energy-efficient building designs [2]. The glo-
bal irradiance on a horizontal plane consists of two differently
featured components, namely the direct and diffuse irradiance.
The two components are essential to estimate the solar irradiance
in arbitrary surface directions [3,4], obstructed environments [5]
and interior spaces [6] for building energy simulation, and may
affect the photovoltaic system analysis [7,8]. The irradiance varies
with latitude, seasons and time due to the different solar positions
under unpredictable weather conditions [9]. Long-term data mea-
surement is the most effective and accurate way of setting up data-
bases [10,11]. However, the measurements of diffuse and direct
irradiance are less straightforward than global component. In order

to measure the diffuse irradiance, a shadow ring is usually adopted
to obstruct the direct component but part of diffuse irradiance is
blocked at the same time. Thus correction is required [12]. Sun
trackers can be utilized to trace the solar position consistently
but such apparatus can be costly. Therefore, the basic horizontal
solar irradiance data are not always readily available in many parts
of the world [13]. In Hong Kong, only hourly global solar irradiance
on a horizontal plane (EHG W/m2) was systematically recorded by
the local meteorological station called Hong Kong Observatory
(HKO) for a time period of more than 35 years while the hourly dif-
fuse and direct irradiance were not measured until Aug. 2008.

In absence of hourly horizontal diffuse irradiance (EHD W/m2),
there are a number of prediction models of different complexities
from simple empirical models [14–17], semi-empirical models
[18–21] to rigorous radiative transfer models [22]. The radiative
transfer models and semi-empirical models have the advantage
of high accuracy. However, they tend to rely on more input vari-
ables and are usually more complex than empirical models. It
seems that they are not readily applicable for the study of long
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term weather conditions since the required variables such as aero-
sol and ozone amount may be unavailable. In terms of the empir-
ical models, the most common approach is to correlate the diffuse
fraction (K) given in Eq. (1) with other readily available variables in
simple regression equations.

K ¼ EHD=EHG ð1Þ
The diffuse fraction depicts the level of diffuse component (EHD)

with respect to the global solar irradiance (EHG) of the ground level.
The most frequently used variable for correlation is clearness index
(Kt) as Eq. (2), which displays the percentage of solar irradiance
neither being absorbed nor reflected by atmosphere.

Kt ¼ EHG=EHE ð2Þ
where EHE is the hourly extra atmospheric solar irradiance on a hor-
izontal plane (W/m2). Other predictors depict weather conditions
that may also contribute to the correlations. In 2001, Boland et al.
[23] proposed a model based on logistic equation for estimating K
from Kt. The model was modified in 2007 [24] and 2010 [25] to
employ other variables and improve the prediction ability [26].
There are, however, a number of available meteorological variables
which have potential to be well correlated with K. In order to
improve the performance while keep the simplicity of the equation,
it is expected to quantify the relevance between K and the available
meteorological variables.

An alternative approach is to use the technique of machine
learning (ML) that extracts knowledge from the available database
and estimates the relationship between K and other readily acces-
sible variables [27–30]. A limitation of many ML algorithms is that
the models being established are restricted in interpretability [31],
which have limited physical implications to the problem of inter-
est. However, the model developed by the algorithm of Boosted
Regression Tree (BRT) can be employed to identify the contribution
of each input variable in the prediction of output [32]. The method
was used for the analysis of many ecological [33–35] and environ-
mental [36,37] problems that were featured with large dataset,
great number of relevant variables and complex interrelationship
between input and output variables. This paper analyses the solar
irradiance data recorded by the HKO from Aug. 2008 to Dec. 2013.
The importance of meteorological variables in predicting K were
analyzed by the algorithm of BRT and logistic regressions [38] were
developed to predict K using the important variables. The findings
and building design implications are discussed.

2. Data collection and solar irradiance in Hong Kong

Hong Kong (HK) is located in south coast of China (22.3�N,
114.3�E) with a subtropical climate. The summer (May to Sep.) is
hot and humid while the winter (Dec. to Feb.) is dry and cool. In
Aug. 2008, HKO established a station to measure hourly EHG, EHD
and direct normal irradiance (ENB W/m2) in an outlying island.
The data collection starts just before sunrise and ends after sunset
every day. The hourly measurements in local civil time between
Aug. 2008 and Dec. 2013 were applied in the study.

Fig. 1 presents the monthly averaged daily direct and diffuse
solar radiation energy on a horizontal plane (W h/m2). It can be
seen that the daily diffuse radiation varies from 1469W h/m2 in
December to 2553W h/m2 in June while daily direct radiation
ranges between 778W h/m2 in March and 2991W h/m2 in July.
The average global, direct and diffuse radiation energy are 3773,
2070 and 1703W h/m2, respectively. The maximum daily global
solar radiation observed in July is mainly due to the high solar alti-
tude and long day-length in summer. The below average daily solar
radiation from Nov. to Apr. are resulted from the low solar altitude
in winter and unstable weather conditions in spring. It is noted

that the months receive low global solar radiation containing a
high percentage of its diffuse component. Generally, the variation
in diffuse solar radiation is comparatively less than that in direct
component. The annual averages of horizontal diffuse and direct
are around 54.9% and 45.1%, respectively, which implies the impor-
tance of diffuse solar radiation in HK. The findings are in good
agreement with our previous work [39,40].

Hourly data in solar irradiance would be more appropriate for
examining cooling load. Fig. 2 plots the monthly-average-hourly
EHG and EHD in February and July representing respectively the low-
est and largest recorded monthly-average-daily EHG. The peak solar
irradiance appears at solar noon for both EHG and EHD. The EHG of
just over 700W/m2 and approximately 400W/m2 are observed
at noon in July and Feb., respectively. The EHD values are quite close
for these two months.

To eliminate spurious data and erroneous measurements, strin-
gent quality-controls tests based on the CIE guidance were adopted
[41]. Table 1 summarizes the criteria and number of data for each
test. Over 2400 groups of data (observations) near sunrise and sun-
set with a solar altitude of less than 4� or EHG of less than 20 W/m2

were excluded. Totally, 326 observations were rejected under Level
1 and 2 tests. After the tests, 21,515 hourly solar irradiance sets
(i.e. EHG, EHD and ENB) were retained for the subsequent analysis.

Table 2 lists the predictors whose importance to K prediction
were analyzed by the machine learning algorithm of Boosted
Regression Tree (BRT). Sine function of solar altitude (l) is used
because the variable implicates the contribution of normal irradi-
ance to the horizontal plane in a magnitude from 0 to 1. DKt is
the stability index developed by Perez et al. [42], which differenti-
ates the stable (e.g. hazy) and unstable (e.g. partly cloudy) sky con-
ditions. The unit of cloud amount (cld) was converted from Okta to
percentile where 0 Okta and 8 Okta correspond to 0% and 100%,
respectively. All the variables were recorded in civil local time. A
further check of the variables in Table 2 removes 45 observations
due to either sky obstructed from view (for cld) or the missing
record of wind speed. Ultimately, 21,470 datasets were adopted.

Fig. 3 shows the correlation between K and Kt. It can be found
that K remains nearly constant (between 0.9 and unity) up to about
Kt = 0.25. It indicates that EHD is the predominant component of EHG
when there is little solar irradiance received on the ground sur-
faces. When Kt is increased, a trend close to the linear decreasing
of K can be identified, though the data get very scattered. The linear
correlation implies the strong interrelationship between Kt and K
while the scattering infers that K relies on more predictors other
than Kt. There are few observations with Kt greater than 0.8. Similar
trends were also observed by Boland et al. and Ridley et al., who
studied the hourly solar irradiance in Adelaide, Australia and
Bracknell, UK [25].

3. Boosted Regression Tree (BRT)

The Boosted Regression Tree (BRT) algorithm was used to gen-
erate an ensemble of Regression Trees (RT) that correlates hourly
diffuse fraction (K) with the relevant variables (predictors) based
on the 21,740 observations. As given in Fig. 4, the model is com-
posed by a number of sequentially introduced RTs [43]. The first
RT is developed to predict the value of K while the subsequent
trees in step n are evolved targeting at the residuals (Rn�1) of the
previously established RT ensemble in step n � 1. As such, the
ensemble of RTs is trained to focus on the variation of K that are
not yet modelled by the existing tree ensemble in every step.

Each RT [44] categorizes observations with a number of predic-
tors (Pre1, Pre2, . . .) into various groups by a sequence of binary par-
titions (i.e. splits). Fig. 5 illustrates a split that separates a single
group of Ni observations into two child groups according to the
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