Applied Energy 181 (2016) 540-548

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Strategy-making for a proactive distribution company in the real-time market with demand response

Chunyu Zhang^a, Qi Wang^b, Jianhui Wang^{c,*}, Magnus Korpås^a, Mohammad E. Khodayar^d

^a Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

^b Center for Electric Power and Energy, Technical University of Denmark, Lyngby, Denmark

^c Energy Systems Division, Argonne National Laboratory, Argonne, IL, USA

^d Electrical Engineering Department, Southern Methodist University, Dallas, TX, USA

HIGHLIGHTS

• A proactive DISCO (PDISCO) is presented to trade in the real-time market.

• A demand response definition is presented.

• A bi-level model is proposed to illustrate the strategy-making problem of the PDISCO.

• Continuous trading strategies (offers and bids) are achieved by PDISCO.

ARTICLE INFO

Article history: Received 28 May 2016 Received in revised form 26 July 2016 Accepted 11 August 2016

Keywords:

Demand response (DR) Proactive distribution company (PDISCO) Multi-period AC power flow Mathematical program with equilibrium constraints (MPEC) Mathematical program with primal and dual constraints (MPPDC)

ABSTRACT

This paper proposes a methodology to optimize the trading strategies of a proactive distribution company (PDISCO) in the real-time market by mobilizing the demand response. Each distribution-level demand is considered as an elastic one. To capture the interrelation between the PDISCO and the real-time market, a bi-level model is presented for the PDISCO to render continuous offers and bids strategically. The upper-level problem expresses the PDISCO's profit maximization, while the lower-level problem minimizes the operation cost of the transmission-level real-time market. To solve the proposed model, a primal-dual approach is used to translate this bi-level model into a single-level mathematical program with equilibrium constraints. Results of case studies are reported to show the effectiveness of the proposed model. © 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A low-cost and high-efficiency demand response (DR) has been recognized worldwide as a valuable resource [1,2]. Because DR is dispersed and highly sensitive to the real-time price [3,4], an aggregator is commonly considered as a third entity to launch direct control or incentive schemes to manage individual DRs [5]. As addressed in the New York Reforming Energy Vision (NY REV) [6], the concept of Distributed System Platform Provider (DSPP) is raised to promote the utilization of distributed energy resources (DERs) deployed in the distribution-level (DL) network. To enhance

the transmission and distribution trading efficiency, the distribution company (DISCO) can bee seen as a DSPP, while DR [7,8], distributed generation (DG) [9], and microgrids (MGs) [10] can be considered as the major flexibility providers [11–13]. In practice, the DISCO has full knowledge of both the transmission-level (TL) markets and the DL operations. For this reason, the DISCO is a superior representation [14,15] of the DR resources available to trade in the TL market.

The well-developed smart grid technology [16,17] that exists today turns bidirectional power exchanging between the distribution and transmission networks into reality. As a profit-driven company, to participate in the real-time market, at each time t, the DISCO has to downwardly optimize the DR portfolio and upwardly hand over a trading strategy (offer/bid) to the wholesale market for profit maximization. The continuous strategic behaviors of the DISCO result in a dual role in the market, i.e., as an active

^{*} Corresponding author.

E-mail addresses: chunyu.zhang@ntnu.no (C. Zhang), qiwa@elektro.dtu.dk (Q. Wang), jianhui.wang@anl.gov (J. Wang), magnus.korpas@ntnu.no (M. Korpås), mkhodayar@smu.edu (M.E. Khodayar).

Nomenclature

Sets and Indices

i,j,B^{DS}	index and set of distribution lovel (DI) and	δ_{ti}	real-t
n,m,B [™] ij,A ^{DS}	index and set of distribution-level (DL) and transmission-level (TL) buses, respectively index and set of DL feeders and TL lines, respectively	Parameters	
nm,A ^{TS} l,L d,D	index and set of DL demands and TL demands, respectively	C_g^{UP}, C_g^{DN}	real-t g [€/N
g,G	index and set of TL generators	P_{tg}^{G}	day-a
t, T	index and set of time periods (e.g., hours per day)	R_{tg}^{UP}, R_{tg}^{DN}	day-a of TL
$\mathcal{M}_L, \mathcal{M}_D$	mapping of the set of DL/TL demands onto the set of DL/TL buses, respectively	$P_{td}^{TSD}, P_{td}^{TSR}$	day-a
\mathcal{M}_{G}	mapping of the set of TL generators onto the set of TL buses	$P_{tl}^{DSD}, Q_{tl}^{DSD}$	at tim day-a
		P ^{DS}	[MW] active
Variables		\overline{P}_{nm}^{TS}	capac
r_{tg}^{UP}, r_{tg}^{DN}	real-time up and down regulation power of generator g at time <i>t</i> [MW], [MW]	$\overline{S}, \overline{S}_{ij}$	capac feede
$P_{tl}^{DRT}, Q_{tl}^{DRT}$	real-time offering/bidding quantities of the PDISCO at time t [MW], [MVar]	$\underline{Q}_{i}^{C}, \overline{Q}_{i}^{C}$	reacti bus <i>i</i>
P_{td}^{ST}	TL load-shedding of demand d at time t [MW]	$\underline{V}_i, \overline{V}_i$	limits
P_{tl}^{SD}, Q_{tl}^{SD}	active and reactive power of DS load-shedding for de- mand l at time t [MW], [MVar]	B_{nm} G_{ij}, B_{ij}, b_{ij}	susce condu
Q_{ti}^C	real-time reactive power from DL shunt compensator at bus <i>i</i> at time <i>t</i> [MVar]	λ_t^{DSD}	of the DL sa
$P_{t,ij}^{Flow}, Q_{t,ij}^{Flow}$	real-time active and reactive power flows through DL feeder <i>ij</i> at time <i>t</i> [MW], [MVar]	λ_{tn}^{DA}	day-a
V _{ti}	real-time voltage magnitude of DL bus <i>i</i> at time <i>t</i> [kV]	$\lambda_t^{ST}, \lambda_t^{SD}$	at tin TL/DL
λ_{tI}^{DRT}	real-time offering/bidding price of the PDISCO at time	Γ	elasti
°ʻtl	$t [\epsilon/MW]$	τ_i	transf
α_{tl}	elasticity factor of DL demand l at time t	ho	consu

producer when providing offers, but as an active consumer when submitting bids. Accordingly, the trading between the DISCO and the TL market features in a bidirectional transaction. To characterize this type of DISCO, we define it as a proactive DISCO (PDISCO) in this paper.

Note that the PDISCO's trading strategies are correlated with the market's outcomes. Thus, the PDISCO trading within the market can be formulated as a bi-level game-theoretic model. The lower-level problem is about the real-time market clearing based on DC power flow, aiming to minimize the TL operation cost. The upper-level problem is to maximize the PDISCO's profit by AC power flow constraints, with the PDISCO seeking to render strategic offers/bids. It is also worth noting that the lower-level problem is linear and thus convex, while the upper-level problem is nonlinear and non-convex. A primal-dual approach [18] can be used to reformulate the proposed bi-level model as a solvable mathematical program with equilibrium constraints (MPEC).

Some papers pertaining to DISCO trading in the TL markets are available in the literature. In the day-ahead market, a bi-level model is proposed in [19] to address a DISCO's operation decisions with DGs and interruptible loads (ILs). However, the DISCO's offers or bids are not included in the market's objective. A hierarchical market structure is provided in [20] to depict the interaction between the distribution and transmission networks. On the basis of this structure, a bi-level model is presented, while the locational marginal prices (LMPs) are not endogenously obtained by the power flow constraints. To address a DL market framework by incorporation into the TL market, a bi-level model is proposed for a load serving entity (LSE) to manage aggregator-based DR through a dynamic pricing mechanism [21]. In particular, DC power flow is

θ_{tn}	real-time voltage angle of TL bus n at time t
δ_{ti}	real-time voltage angle of DL bus <i>i</i> at time <i>t</i>

c_g^{UP}, c_g^{DN}	real-time up and down regulation cost of TL generator
c	g [ϵ /MW], [ϵ /MW]
$P^G_{tg} \ R^{UP}_{tg}, R^{DN}_{tg}$	day-ahead offer of TL generator g at time t [MW]
R_{ta}^{UP}, R_{ta}^{DN}	day-ahead up and down regulation reserve capacities
ig ig	of TL generator g at time t [MW], [MW]
$P_{td}^{TSD}, P_{td}^{TSR}$	day-ahead and real-time consumption of TL demand d
- ta ',- ta	at time t [MW], [MW]
$P_{tl}^{DSD}, Q_{tl}^{DSD}$	day-ahead consumption of DL demand l at time t
\mathbf{r}_{tl} , \mathbf{q}_{tl}	[MW], [MVar]
\overline{P}^{DS}	active power injection limit for the PDISCO [MW]
$\overline{P_{nm}^{TS}}$ $\overline{S}, \overline{S}_{ij}$	capacity limit of each TL line <i>nm</i> [MW]
S, S_{ij}	capacity limits of the DL main substation and each DL
	feeder ij [MVA], [MVA]
Q_i^C, \overline{Q}_i^C	reactive power limits of the DL shunt compensator at
	bus <i>i</i> [MVar], [MVar]
$\underline{V}_i, \overline{V}_i$	limits of voltage magnitude at DL bus <i>i</i> [kV], [kV]
B_{nm}	susceptance of the TL line <i>nm</i> [S]
G_{ij}, B_{ij}, b_{ij}	conductance, susceptance, and charging susceptance
5 5 5	of the DL feeder <i>ij</i> [S], [S], [S]
λ_t^{DSD}	DL sale price at time $t [\in /MW]$
λ_{tn}^{DA}	day-ahead locational marginal price (LMP) at TL bus <i>n</i>
, tn	at time $t \in MW$
$\lambda_t^{ST}, \lambda_t^{SD}$	TL/DL load-shedding price at time $t [\epsilon/MW], [\epsilon/MW]$
Γ^{λ_t} , λ_t	elasticity limit of each DL demand
-	5
$ au_i$	transformer tap ratio at DL bus <i>i</i>
ho	consumption control factor

used to model the distribution network. For simplicity, the TL market performance and physical constraints are not fully considered. At the day-ahead stage, a static bi-level model [22] is presented for the DISCO's make energy acquisitions from the TL wholesale market, ILs and dispatchable DGs. A multi-period bi-level model is proposed and further developed in [23], to indicate the market impacts of the ILs and the DISCO-owned DGs. However, the network constraints are ignored.

From differing perspectives, bi-level modeling is increasingly used to elaborate the trading strategies in markets [24]. In a pool market, a bi-level model is proposed in [25] for a strategic producer to use against its rivals. A stage-based stochastic bi-level model is presented in [26] to derive the offering strategy for a wind-power producer that is involved in both the day-ahead market and the balancing market. From the consumer side, a multi-period bilevel model [27] is proposed to minimize the payment in Pool markets according to LMPs. To make up strategic bidding curves for a large consumer, a bi-level model is further reported in [28] to minimize its day-ahead payment. The strategic operation between the DL operator and MGs is implemented by a bi-level model in [29]. In addition, the authors in [30] propose a bi-level model to handle multiple MGs in a competitive environment.

On the other hand, to enable flexible demand trading in existing electricity markets, load shifting is achieved by a Lagrangian relaxation-based heuristic approach [31]. With the presented market mechanism, the DR performance is further validated and discussed by [32]. The network constraints are excluded by the model. From the management perspective, a contract-based cluster [33] is proposed to facilitate elastic demands to purchase or sell energy according to the interactions between DG and the main Download English Version:

https://daneshyari.com/en/article/4917178

Download Persian Version:

https://daneshyari.com/article/4917178

Daneshyari.com