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h i g h l i g h t s

� A proactive DISCO (PDISCO) is presented to trade in the real-time market.
� A demand response definition is presented.
� A bi-level model is proposed to illustrate the strategy-making problem of the PDISCO.
� Continuous trading strategies (offers and bids) are achieved by PDISCO.
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a b s t r a c t

This paper proposes a methodology to optimize the trading strategies of a proactive distribution company
(PDISCO) in the real-time market by mobilizing the demand response. Each distribution-level demand is
considered as an elastic one. To capture the interrelation between the PDISCO and the real-time market, a
bi-level model is presented for the PDISCO to render continuous offers and bids strategically. The upper-
level problem expresses the PDISCO’s profit maximization, while the lower-level problem minimizes the
operation cost of the transmission-level real-time market. To solve the proposed model, a primal-dual
approach is used to translate this bi-level model into a single-level mathematical program with equilib-
rium constraints. Results of case studies are reported to show the effectiveness of the proposed model.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A low-cost and high-efficiency demand response (DR) has been
recognized worldwide as a valuable resource [1,2]. Because DR is
dispersed and highly sensitive to the real-time price [3,4], an
aggregator is commonly considered as a third entity to launch
direct control or incentive schemes to manage individual DRs [5].
As addressed in the New York Reforming Energy Vision (NY REV)
[6], the concept of Distributed System Platform Provider (DSPP)
is raised to promote the utilization of distributed energy resources
(DERs) deployed in the distribution-level (DL) network. To enhance

the transmission and distribution trading efficiency, the distribu-
tion company (DISCO) can bee seen as a DSPP, while DR [7,8], dis-
tributed generation (DG) [9], and microgrids (MGs) [10] can be
considered as the major flexibility providers [11–13]. In practice,
the DISCO has full knowledge of both the transmission-level (TL)
markets and the DL operations. For this reason, the DISCO is a
superior representation [14,15] of the DR resources available to
trade in the TL market.

The well-developed smart grid technology [16,17] that exists
today turns bidirectional power exchanging between the distribu-
tion and transmission networks into reality. As a profit-driven
company, to participate in the real-time market, at each time t,
the DISCO has to downwardly optimize the DR portfolio and
upwardly hand over a trading strategy (offer/bid) to the wholesale
market for profit maximization. The continuous strategic behaviors
of the DISCO result in a dual role in the market, i.e., as an active
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producer when providing offers, but as an active consumer when
submitting bids. Accordingly, the trading between the DISCO and
the TL market features in a bidirectional transaction. To character-
ize this type of DISCO, we define it as a proactive DISCO (PDISCO) in
this paper.

Note that the PDISCO’s trading strategies are correlated with
the market’s outcomes. Thus, the PDISCO trading within the mar-
ket can be formulated as a bi-level game-theoretic model. The
lower-level problem is about the real-time market clearing based
on DC power flow, aiming to minimize the TL operation cost. The
upper-level problem is to maximize the PDISCO’s profit by AC
power flow constraints, with the PDISCO seeking to render strate-
gic offers/bids. It is also worth noting that the lower-level problem
is linear and thus convex, while the upper-level problem is non-
linear and non-convex. A primal-dual approach [18] can be used
to reformulate the proposed bi-level model as a solvable mathe-
matical program with equilibrium constraints (MPEC).

Some papers pertaining to DISCO trading in the TL markets are
available in the literature. In the day-ahead market, a bi-level
model is proposed in [19] to address a DISCO’s operation decisions
with DGs and interruptible loads (ILs). However, the DISCO’s offers
or bids are not included in the market’s objective. A hierarchical
market structure is provided in [20] to depict the interaction
between the distribution and transmission networks. On the basis
of this structure, a bi-level model is presented, while the locational
marginal prices (LMPs) are not endogenously obtained by the
power flow constraints. To address a DL market framework by
incorporation into the TL market, a bi-level model is proposed for
a load serving entity (LSE) to manage aggregator-based DR through
a dynamic pricing mechanism [21]. In particular, DC power flow is

used to model the distribution network. For simplicity, the TL mar-
ket performance and physical constraints are not fully considered.
At the day-ahead stage, a static bi-level model [22] is presented for
the DISCO’s make energy acquisitions from the TL wholesale mar-
ket, ILs and dispatchable DGs. A multi-period bi-level model is pro-
posed and further developed in [23], to indicate the market
impacts of the ILs and the DISCO-owned DGs. However, the net-
work constraints are ignored.

From differing perspectives, bi-level modeling is increasingly
used to elaborate the trading strategies in markets [24]. In a pool
market, a bi-level model is proposed in [25] for a strategic producer
to use against its rivals. A stage-based stochastic bi-level model is
presented in [26] to derive the offering strategy for a wind-power
producer that is involved in both the day-ahead market and the
balancing market. From the consumer side, a multi-period bilevel
model [27] is proposed to minimize the payment in Pool markets
according to LMPs. To make up strategic bidding curves for a large
consumer, a bi-level model is further reported in [28] to minimize
its day-ahead payment. The strategic operation between the DL
operator and MGs is implemented by a bi-level model in [29]. In
addition, the authors in [30] propose a bi-level model to handle
multiple MGs in a competitive environment.

On the other hand, to enable flexible demand trading in existing
electricity markets, load shifting is achieved by a Lagrangian
relaxation-based heuristic approach [31]. With the presented mar-
ket mechanism, the DR performance is further validated and dis-
cussed by [32]. The network constraints are excluded by the
model. From the management perspective, a contract-based clus-
ter [33] is proposed to facilitate elastic demands to purchase or sell
energy according to the interactions between DG and the main

Nomenclature

Sets and Indices

i;j;BDS

n;m;BTS index and set of distribution-level (DL) and
transmission-level (TL) buses, respectively

ij;KDS

nm;KTS index and set of DL feeders and TL lines, respectively
l;L
d;D index and set of DL demands and TL demands,

respectively
g;G index and set of TL generators
t; T index and set of time periods (e.g., hours per day)
ML;MD mapping of the set of DL/TL demands onto the set of

DL/TL buses, respectively
MG mapping of the set of TL generators onto the set of TL

buses

Variables

rUPtg ; r
DN
tg real-time up and down regulation power of generator

g at time t [MW], [MW]
PDRT
tI ;QDRT

tI real-time offering/bidding quantities of the PDISCO at
time t [MW], [MVar]

PST
td TL load-shedding of demand d at time t [MW]

PSD
tl ;Q

SD
tl active and reactive power of DS load-shedding for de-

mand l at time t [MW], [MVar]
QC

ti real-time reactive power from DL shunt compensator
at bus i at time t [MVar]

PFlow
t;ij ;QFlow

t;ij real-time active and reactive power flows through DL
feeder ij at time t [MW], [MVar]

Vti real-time voltage magnitude of DL bus i at time t [kV]
kDRTtI real-time offering/bidding price of the PDISCO at time

t [€/MW]
atl elasticity factor of DL demand l at time t

htn real-time voltage angle of TL bus n at time t
dti real-time voltage angle of DL bus i at time t

Parameters

cUPg ; cDNg real-time up and down regulation cost of TL generator
g [€/MW], [€/MW]

PG
tg day-ahead offer of TL generator g at time t [MW]

RUP
tg ;R

DN
tg day-ahead up and down regulation reserve capacities

of TL generator g at time t [MW], [MW]
PTSD
td ; PTSR

td day-ahead and real-time consumption of TL demand d
at time t [MW], [MW]

PDSD
tl ;QDSD

tl day-ahead consumption of DL demand l at time t
[MW], [MVar]

PDS active power injection limit for the PDISCO [MW]
PTS
nm capacity limit of each TL line nm [MW]

S; Sij capacity limits of the DL main substation and each DL
feeder ij [MVA], [MVA]

QC
i ;Q

C
i reactive power limits of the DL shunt compensator at

bus i [MVar], [MVar]
Vi;Vi limits of voltage magnitude at DL bus i [kV], [kV]
Bnm susceptance of the TL line nm [S]
Gij;Bij; bij conductance, susceptance, and charging susceptance

of the DL feeder ij [S], [S], [S]
kDSDt DL sale price at time t [€/MW]

kDAtn day-ahead locational marginal price (LMP) at TL bus n
at time t [€/MW]

kSTt ; kSDt TL/DL load-shedding price at time t [€/MW], [€/MW]
C elasticity limit of each DL demand
si transformer tap ratio at DL bus i
q consumption control factor
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