
Static partitioning and mapping of kernel-based applications
over modern heterogeneous architectures

J. Daniel García ⇑, Rafael Sotomayor, Javier Fernández, Luis Miguel Sánchez
Computer Architecture Group, Computer Science and Engineering Department, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain

a r t i c l e i n f o

Keywords:
Parallel computing
Heterogeneous computing
Kernel partitioning

a b s t r a c t

Heterogeneous architectures are being used extensively to improve system processing
capabilities. Critical functions of each application (kernels) can be mapped to different
computing devices (i.e. CPUs, GPGPUs, accelerators) to maximize performance. However,
best performance can only be achieved if kernels are accurately mapped to the right device.
Moreover, in some cases those kernels could be split and executed over several devices at
the same time to maximize the use of compute resources on heterogeneous parallel archi-
tectures.

In this paper, we define a static partitioning model based on profiling information from
previous executions. This model follows a quantitative model approach which computes
the optimal match according to user-defined constraints.

We test different scenarios to evaluate our model: single kernel and multi-kernel appli-
cations. Experimental results show that our static partitioning model could increase perfor-
mance of parallel applications by deploying not only different kernels over different
devices but a single kernel over multiple devices. This allows to avoid having idle compute
resources on heterogeneous platforms, as well as enhancing the overall performance.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the number of heterogeneous architectures in the top 500 list [1] has been increasing. They are mainly
based on a combination of one or several GPGPUs and CPU cores. Those architectures consist of several computing devices
that work together, where some are better fitted than others for specific classes of algorithms. The main computing device is
a multi-core CPU well fitted for task parallelism, while graphics processing units (GPU) are currently very popular for most
data parallel algorithms. However, in general, many applications do not make efficient use of available computing resources,
which leads to a reduction of global efficiency for those parallel heterogeneous architectures [2].

The use of accelerators to improve performance of parallel programs is widespread. However, there are still some limi-
tations in the use of those accelerators. For example, the memory-bound problem [3] refers to a general case where a code is
limited by memory access [4]. Additionally, ‘‘a data-transfer bottleneck emerges as data to be consumed and produced by the
GPU must be transferred from the host CPU memory towards the GPU memory (and vice versa). Data transfers tend to become
a performance bottleneck because the computing processors (CPU, GPU or accelerators) are increasing their throughput much faster
than the bandwidth of the physical connections. This problem cancels out any gain obtained from the external accelerators (e.g.
GPU, Xeon Phi)’’ as noted in [22].

http://dx.doi.org/10.1016/j.simpat.2015.05.010
1569-190X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: josedaniel.garcia@uc3m.es (J.D. García).

Simulation Modelling Practice and Theory 58 (2015) 79–94

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier .com/ locate/s impat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2015.05.010&domain=pdf
http://dx.doi.org/10.1016/j.simpat.2015.05.010
mailto:josedaniel.garcia@uc3m.es
http://dx.doi.org/10.1016/j.simpat.2015.05.010
http://www.sciencedirect.com/science/journal/1569190X
http://www.elsevier.com/locate/simpat


This problem cancels out any gain obtained from the external accelerators (e.g. GPU, Xeon Phi). Finally, not all algorithms
fit well to GPGPU programming model [5], with the multi-core programming model being a better choice for certain parallel
applications [6].

Open standards regarding parallel programming models have been proposed for developing new software over hetero-
geneous architectures, such as OpenACC [7] or the latest version of OpenMP (4.0 or higher) [8]. However, those standards
are currently not fully supported by all hardware devices.

The Open Computing Language (OpenCL) [9] is a C-based programming model, used for different computing devices (e.g.
CPUs, GPGPUs, DSP, FPGA, accelerators) that has become widely accepted and supported by major vendors. OpenCL is based
on parallel code regions, called kernels, that could be executed on a device. OpenCL allows the development of heteroge-
neous parallel applications that could use more than one computing device, improving application efficiency.

Achieving an efficient mapping of the kernels onto the available computing devices is challenging due to the variation in
characteristics and requirements of those kernels. The characteristics from each kernel (e.g. data input and output size, data
access pattern or number of branches) and the features of each device result in different performances for different
kernel-device combinations. Therefore, some applications include several versions of the same kernel in order to use the
one that best fits the device at hand. Moreover, sometimes one kernel can be split into several sub-kernels that can be spread
over a set of computing devices. This operation, called partitioning, can improve the performance obtained with only one
computing device. This partitioning may affect different sections of the code (task-level) or one or more variables, which
are split (over a loop, for instance) to obtain data-level parallelism.

The final goal is the generation of an efficient kernel mapping and partitioning based on a careful selection of the best
version for each kernel, a correct management of the dependencies between the selected kernels, and the use of the profiling
information about their expected performance.

This paper proposes a partitioning model that allows to describe the different schedules considering kernels, devices,
input/output sizes and the relations between them. All these concepts are combined in a representation of the possible
schedules for a given programs. The resulting representation is used in an algorithm that performs an off-line partitioning
and scheduling of a set of kernels obtained from an application. The partitioning/scheduling is focused on maximizing the
performance of the kernels executed in parallel, while observing the dependencies between them. Also, an execution algo-
rithm is presented which allows the application to run the scheduling plan previously obtained.

The rest of the paper is organized as follows: Section 2 presents the scheduling model, the static off-line partition-
ing/scheduling proposed algorithm and the algorithm to run the execution plan; in Section 3 we show an evaluation of
the proposal performed with single kernel and multi kernel examples; in Section 4 we review related work; and finally,
in Section 5 we provide conclusions and outline future work.

2. Scheduling model and algorithm

2.1. Model overview

Parallel heterogeneous architectures are those where different computing devices are available (e.g. CPUs, GPUs, DSPs,
FPGAs, and other accelerators). In this paper the study is restricted to single node computers, explicitly leaving out
multi-node architectures (e.g. clusters). The ultimate objective is to be able to schedule the set of kernels from a codebase
into the computing devices in the heterogeneous platform. To this end, a model has been created that allows to represent all
different possible schedules. The model is based on four key aspects: kernels, input/output size, devices and transfer rates.
Each pair of kernel and input/output size takes a certain time to run. Also related to the data size is the transfer rate. Lastly,
each device has its own strengths and limitations, and as such their performance will vary from kernel to kernel.

For the purposes of this study, the combination of a kernel and an specific input size is named an execution unit. Thus, a
given kernel will be considered a different execution unit when run with an input size of 256 or 512 bytes.

There are two important relationships among execution units: incompatibility and dependency. Two execution units are
incompatible if both cannot be executed together on the same application run. The idea behind this is that the algorithm
is able to consider different versions of the source code, selecting the best one for each device. For example, it may decide
between executing one large execution unit or several smaller execution units when considering the same section of code, or
whether to run the outermost or innermost loop as an execution unit. One execution unit depends on another if it needs to
wait until the latter has finished. This categorization allows to detect independent execution units, which can be run in par-
allel. Ultimately, this will allow to differentiate between valid and invalid sequences of execution, improving the computa-
tion of the best schedule accordingly.

Another measure of interest is the feasibility of deploying an execution unit on a specific device. One execution unit is
feasible for one device if it can be executed on that device. This is required to decide which is the best device for each exe-
cution unit considering only valid devices for each execution unit. For example, any execution unit that performs system
calls shall be considered unfeasible for a GPGPU device. An execution unit with a sufficiently large input data may be unfea-
sible for a device with limited memory.

The previous concepts are formalized as follows:
Let E be set of execution units E ¼ fe1; . . . ; elg;D the set of devices D ¼ fd1; . . . ; dng and R the set of execution restrictions

R ¼ fr1; . . . ; rng.

80 J.D. García et al. / Simulation Modelling Practice and Theory 58 (2015) 79–94



Download	English	Version:

https://daneshyari.com/en/article/491733

Download	Persian	Version:

https://daneshyari.com/article/491733

Daneshyari.com

https://daneshyari.com/en/article/491733
https://daneshyari.com/article/491733
https://daneshyari.com/

