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a b s t r a c t

Inefficient controlling strategies in heating and cooling systems have given rise to a large amount of
energy waste and to widespread complaints about the thermal environment in buildings. An intelligent
control method based on a support vector machine (SVM) classifier is proposed in this paper. Skin
temperatures are the only inputs to the model and have shown attractive prediction power in recog-
nizing steady state thermal demands. Data were accumulated from two studies to consider potential use
for either individuals or a group of occupants. Using a single skin temperature correctly predicts 80% of
thermal demands. Using combined skin temperatures from different body segments can improve the
model to over 90% accuracy. Results show that three skin locations contained enough information for
classification and more would cause the curse of dimensionality. Models using different skin tempera-
tures were compared. Optimal parameters for each model were provided using grid search technique.
Considering the overfitting possibility and the cases without learning processes, SVM classifiers with a
linear kernel are preferred over Gaussian kernel ones.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Widespread in both residential and commercial buildings,
heating, ventilation and air conditioning (HVAC) systems consume
almost 20% of the world's energy. The benefits from this con-
sumption are not as great as they should be. In a large study, only
11% of buildings met the basic criterion [1,2] that 80% or more of
their occupants be satisfied with their thermal environment [3].
Behind the unsatisfactory cases may be ineffective thermal envi-
ronment control strategies.

Most of the air conditioning systems have temperature/hu-
midity controllers. In some cases such as residential buildings and
private offices, occupants tune the set points according to their
perception, without a sense of what temperatures could be
comfortable or the energy costs associated with the temperatures
selected. As a result, the set points are frequently revised and en-
ergy is wasted [4]. In other circumstances like conference halls,
occupants have little access to the controllers. Temperature is
preset based on standard recommended temperatures or on the
operators' feelings about what causes the least thermal complaints,

which often results in overcooling of the space.
Over the past few decades, many thermal comfort controllers

have been proposed [5e7]. The essential idea is to replace the oc-
cupants' feedback with thermal sensation prediction based on
built-in comfort models or data-driven self-learning methods. The
inputs are commonly physical environment parameters such as air
temperature, humidity, air velocity and radiation temperature.
Measuring these in occupied spaces presents a number of chal-
lenges. In addition, clothing insulation and occupant activity level
are difficult-to-measure factors that greatly affect comfort model
accuracy. To alleviate these problems, one potential approach is to
control the thermal environment based on physiological
parameters.

The dramatic progress of wearable devices has created tech-
nology ready for monitoring body parameters in daily life. Surface
body temperature sensors could be attached to watches, clothes
and so on. Fiber Bragg grating (FBG) based sensors have made it
possible to monitor the skin temperature of different body parts
under intelligent clothing [8]. The development of infrared camera
technology also makes it possible to capture uncovered skin
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temperatures remotely [9]. However, previous models linking
sensation with physiological parameters such as by Fiala [10] and
Zhang [11e14] are too complicated to be used in designing practical
controllers.

To develop practical ways of using skin temperatures to control
heating and cooling systems, Taniguchi et al. [15] proposed an
equation to estimate car occupants' thermal sensation based on
face skin temperatures. Wang et al. [16] conducted a lab study to
explore the hypothesis proposed by Humphreys et al. [17] that
finger temperature or an air and finger temperature combination
was capable of predicting thermal sensations. They found that the
temperature gradient between arm and hand could be a good in-
dicator for cool sensation. To a certain extent, these studies have
laid the groundwork for designing intelligent controller based on
skin temperatures.

In this paper, we have combined a machine learning algorithm
with local steady-state skin temperatures. Different SVM classifiers,
model parameters and skin temperature combinations were tried
to explore to what extent skin temperatures could go in predicting
the thermal states. Exact ways of applying the prediction models to
control heating and cooling system were proposed. We collected
data from two studies to test the model performance for building
areas with either one or more occupants. As the SVM approach
needs a process of data learning, we discuss the learning sample
sizes needed for certain classifiers to work well automatically, and
also examine the performance of preset models for new occupants
without training.

2. SVM controlling prototype

As shown in Fig. 1, the SVM approach is a data-driven model.
During the learning procedure, data are collected in traditional
ways in which occupants adjust the heating and cooling system
according to their perception of the thermal environment. Thermal
demands and corresponding local skin temperatures are input to
the SVM classifiers to study decision boundaries. After that, SVM
models predict the thermal demands of occupants based on real-
time skin temperature measurements. The application scope of
the controller is flexible, including but not limited to HVAC systems
and more localized task-ambient conditioning (TAC) systems.

Imagine that one or more local skin temperatures T constitute
an m-dimensional space, in which the sample data vectors (T, y)i
(i ¼ 1,…n) are points with corresponding thermal demands y (y ¼ -
1, 0, 1). The basic idea behind the SVM classifier here is to construct
the optimal hyperplanes in the space that could differentiate the
data vectors from others with different thermal demands. As the
SVM classifier is basically a two-class method, a one-vs-one (OvO)
strategy is adopted in this paper to reduce multiclass classification
into a multiple binary problem [18]. Choosing a proper kernel
function has always been the largest challenge in using SVM clas-
sifiers. In this paper, we compare the performance of linear and
Gaussian kernels. Standardization of the dataset was implemented
first. As there are two parameters C and Y for the Gaussian kernel

SVM classifier and one parameter C for the linear kernel SVM
classifier, we used a “grid search” method on C and Y to find the
proper parameters for the classifiers. Exponentially growing se-
quences of C (2�2, 2�1, 20,…, 210) and Y (2�10, 2�9, 2�8,…, 24) were
tried and the ones achieving the best cross-validation accuracy
were picked. To grasp a good understanding of the SVM classifier,
one can refer to the introductions of Hsu et al. [19] and Noble [20].

3. Experiment 1

This experiment considers the validation of SVM classifiers to
learn and predict steady-state thermal demands for a group of
occupants in a uniform environment. We place the focus on three
basic issues: a. the selection of input features; b. the comparison of
classifiers with different kernels; c. tuning parameters for the SVM
models.

3.1. Methods

The data were accumulated from a series of tests carried out in
the Controlled Environmental Chamber at UC Berkeley to correlate
skin temperatures with whole-body sensations for a variety of
warm to cool conditions. Sensation votes were obtained at the end
of the periods used to acclimatize the subjects to the environmental
conditions in the tests. 70 tests were conducted using 11 subjects,
with 969 votes collected.

Subjects were first preconditioned to the day's test in a Jacuzzi
bath for 15 min. After that, thermocouples were attached to collect
local skin temperatures every 5 s. There were totally 28 body lo-
cations measured during the tests. Only 13 of them were used in
this paper: the forehead, cheek, chest, back, abdomen and 8 ex-
tremity skin temperatures on left the side of the body: upper arm,
forearm, hand, finger, thigh, shin, calf and foot (Fig. 2). Subjects
wore a long-sleeve elastic leotard (0.32clo) and socks (0.02clo) with
the thermocouples covered except those at head and hand loca-
tions. Whole-body thermal sensation was investigated repetitively
by pop-up questionnaires on the computer at varying time steps of
1e3min. Experimental details are graphically described in previous
publications [21,22].

In this study, the first 10 votes in each test were abandoned in
order to make sure that the data represent steady-state conditions.
The total data set was here split into two subsets: a training set of
80% (774) and a holdout set of 20% (195). The distributions of total
data and testing data are shown in Fig. 3.

The sensation scale is similar to the ASHRAE 7-point scale,
adding “very hot” and “very cold” (9-point scale: 4- “very hot”, 3-
“hot”, 2-“warm”, 1-“slightly warm”, 0-“neutral”, -1-“slightly cool”,
-2-“cool”, -3- “cold”, -4-“very cold”). Statistical analysis was
implemented in SPSS (IBM SPSS Statistics for Macintosh, Version
22.0). Data were classified into 5 groups based on the thermal
sensation votes (TSV): heating demand (TSV < �1.5, cold); slight
heating demand (�1.5 � TSV < �0.5, cool); neutral
(�0.5 � TSV� 0.5); slight cooling demand (0.5 < TSV� 1.5, warm);

Fig. 1. The controlling concept of SVM classifier based on skin temperature.
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