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a b s t r a c t

The problems of a multi-mode buckling approach which is based on Koiter’s theory of a hybrid column
are presented in this paper. An interaction of global buckling modes with the local ones is discussed.
There are many different local and global buckling modes. Their selected combinations are dangerous
and cause a reduction in the load-carrying capacity. All walls of the hybrid column were plane and made
of many layers. The outer layers were thermal barriers and made of a TiC ceramic layer or an AL-TiC-type
FGM. The inner layers were composed of aluminium layers and a few carbon-epoxy laminate layers. The
classical laminate theory is used to define the ABD matrix which described the relations between applied
loads and the associated deformations. The layup configuration of the hybrid column is general, so the
coupling submatrix B is non-trivial. This submatrix has a significant impact on the value of local buckling
load, whereas its effect on the value of global buckling load can be neglected. The main topic discussed in
this paper is whether and how individual elements of the B submatrix can change the load-carrying
capacity of a hybrid column. A detailed discussion is conducted for simple supported columns with
opened cross-sections subjected to mechanical loads only. Thermal effects are neglected.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The present paper is the last part in a series of papers prepared
by Kolakowski Z., Mania R.J. and Teter A. [1,2]. The main objective
of these papers is to discuss an influence of the coupling stiffness
submatrix B on the post-buckling behaviour of thin-walled col-
umns made of Functionally Graded Materials (FGM) and/or Fibre
Metal Laminates (FML) subjected to compression. Columns with
closed [2] and open [1] cross-sections were discussed. The geomet-
rical dimensions of the columns were chosen in such a way that a
strong interaction between buckling modes occurred. In this case,
different types of global and local buckling modes can be found.
There are numerous combinations of buckling modes which have
to be checked to determine the load-carry capacity of the structure.
The applied multi-mode buckling approach based on Koiter’s
theory makes it possible.

The ABD matrix was calculated with the classical laminate the-
ory (CLT). Each wall of the column was divided into many layers.
The mechanical properties of each layer were known. Because

the sequence of layers was not symmetrical, the coupling stiffness
submatrix (denoted as B) was non-trivial [3]. This matrix is very
important to determine the value of local buckling stresses or the
load-carry capacity. A detailed analysis was carried out for the
pre-defined configuration of the layers to impose the B submatrix
form. It is particularly interesting which elements of the B subma-
trix can improve and which ones can worsen the post-buckling
behaviour of thin-walled columns with open cross-sections sub-
jected to compression. This problem will be discussed in detail fur-
ther in the paper. Variant I for examples I and II, cases 1 and 2 from
[1] is adopted in the present study. In these cases, the B submatrix
has no trivia elements except for B16 = 0 and B26 = 0.

The state of the art in interactive buckling of thin-walled plate
structures made of different types of materials is discussed in
authors’ papers (e.g., [4]). More details on interactive buckling of
FGM structures can be found in [3,5,6] and for FML structures in
[7,8], respectively. Finally, papers [1,2] contain a literature review
as far as FGM/FML structures are concerned. Additional informa-
tion about structures made of Functionally Graded Materials under
different types of loads is presented in review papers by Liew et al.
[9], Jha et al. [10], Swaminathan et al. [11] or a monograph by Hui-
Shen [12]. A more extensive literature survey is to be found in [1,2],
whereas a multi-mode buckling approach based on Koiter’s theory
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was discussed in monographs written by Thompson and Hunt [13],
van der Heijden [14] or Kubiak [15].

2. Formulation of the problem

In the case of a thin-walled column, an effect of the interaction
between various buckling modes has to be taken into account to
determine its load-carrying capacity. The strongest interaction
can be obtained between global and local buckling loads. The buck-
ling modes have to be selected to attain the lowest value of the
load-carrying capacity [1,2], keeping in mind that the interaction
between local buckling modes is very weak.

To solve the problem of the interaction between various buck-
ling modes, a multi-mode buckling approach based on Koiter’s the-
ory was applied. A thin-walled column was divided into plate
elements. A system of differential equilibrium equations was
derived with the variational method. It was solved with the asymp-
totic perturbation method. Details can be found in [1–6,15].

In the present study, a four-mode buckling approach is applied.
The flexural global mode (Euler), the flexural-torsional global
mode, the symmetric local mode and the antisymmetric local
mode are taken into consideration. In this case, the non-linear sys-
tem of equations can be written as [1–6,15]:
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where: ri, fi, f
�
i – buckling stress, dimensionless amplitude and

dimensionless amplitude of the initial imperfections corresponding
to the first, second, third, fourth buckling modes, respectively;
r – compressive stress; apqi and biiii – constant coefficients. All
coefficients were found on the basis of Koiter’s theory which was
presented in papers by Kolakowski [16,17]. The range of indices p,
q is from 1 to 4. The summation is done on the repeated indices.
The load-carrying capacity was determined for the structure with
an initial geometrical imperfection [1,18]. It is the maximum value
of the compressive stress corresponding to the limit point. In this
case, the Jacobian of the system of Eq. (1) is equal to zero.

In the present paper, multilayer columns with top-hat or lip
channel cross-sections subject to mechanical compression only
are under investigation [1]. They were simply supported. The ini-
tial geometrical imperfections had the form of the eigenbuckling
modes which were chosen in Eq. (1). Their amplitudes were not
equal to zero. The constitutive law for the multilayer material
was obtained with the classical laminate theory (CLT) [19]. The
configuration of the layers was not symmetrical, so the coupling
stiffness submatrix was not 0. In this case, strong coupling effects
can be observed. The main issue discussed in this paper is whether
and how individual elements of the coupling stiffness submatrix B
can change the load-carrying capacity of thin-walled columns. This
submatrix has a significant impact on the value of local buckling
load, whereas its effect on the value of global buckling load can
be neglected. It is thus possible to increase the load-carrying
capacity in this type of structures.

3. Analysis of the results

Detailed analyses were performed for the following cross-
section dimensions of hybrid columns (Fig. 1): b1 = 300 mm;
b2 = 150 mm; b3 = 50 mm and the thickness tT1 = tT2 = tT3 = 4.4 mm
[1]. A top hat cross-section (Fig. 1a) and a lip channel cross-section
(Fig. 1b) were considered [1]. The length of all columns was the
same and equal to 4500 mm. Two different configurations of three
sublayers (i.e., TiC ceramics, Functionally Graded Materials and
Fibre Metal Laminate) were considered. The first one was
[TiC/FGM/FML]T and was denoted as CM. In this case, the first outer

sublayer (Fig. 1) was ceramics (i.e., TiC). The second configuration
was [FML/FGM/TiC]T and was denoted as MC. The first outer sub-
layer was FML.

The FML sublayer is made of an alternate sequence of five layers
of aluminium (aluminium is always the outer layer) and 4 layers of
the prepreg, with the total thickness equal to t1 = 3.0 mm and the
following characteristics [1]:

� aluminium (denoted as Al) – Young’s modulus: 69 GPa, Pois-
son’s ratio: 0.3 and the thickness 0.4 mm;

� prepreg (denoted as P) – Young’s modulus: 30.75 GPa, Poisson’s
ratio: 0.144 and the thickness 0.25 mm.

The layup configuration of the FML sublayer was [Al/P/Al/P/Al/
P/Al/P/Al]T.

The FGM sublayer of the thickness t2 = 1.0 mm was made of Al-
TiC [1]. The volume fractions of ceramics Vc and metal Vm were
described as usual with a simple power law of a distribution
throughout the structure thickness [1]:
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Vmðz2Þ ¼ 1� Vcðz2Þ ð3Þ
where: �t2/2 � z2 � t2/2, t2 – thickness of the FGM sublayer, z2 –
coordinate describing the thickness of the FGM sublayer, and the
indicesm and c refer to the metal and ceramic material constituents
(Al-TiC), respectively. The material properties are: Al Young’s mod-
ulus: 69 GPa, TiC Young’s modulus: 480 GPa, Al Poisson’s ratio: 0.33,
TiC Poisson’s ratio: 0.20. That sublayer was modelled with 20 com-
posite layers [1].

The TiC sublayer (i.e., ceramics) was made of TiC. It was com-
posed of one composite layer with the assumed thickness of the
ceramic layer t3 = 0.4 mm [1].

The total thickness of each plate of the columns under consider-
ation was tT = tT1 = tT2 = tT3 = t1 + t2 + t3 = 4.4 mm (like Variants I in
[1]).

Thus, the obtained four different cases are marked as: TH-CM,
TH-MC and LC-CM, LC-MC, where: TH – column with a top hat
cross-section, LC – column with a lip channel cross-section, CM –
[TiC/FGM/FML]T sub-layup configuration, and MC – [FML/FGM/
TiC]T sub-layup configuration, respectively. In all the cases under
analysis, the load-carrying capacity was determined, assuming that
the coupling submatrix B had various element composition. The
applied analytical-numerical method (ANM) [1,2] allows for
numerical setting to zero selected elements of this submatrix. Such
a procedure enables one to track an influence of particular ele-
ments of this matrix on buckling response. Four different variants
were considered. Variant I corresponds to the submatrix B deter-
mined for the assumed layer arrangement of column materials
(i.e., B16 ¼ B26 ¼ B61 ¼ B62 ¼ 0, and the remaining coefficients
Bij – 0 for i, j = 1, 2, 6). This case was discussed in Refs. [1,2]. In
Variant II, all elements of the matrix B are zero (i.e., Bij = 0 for i,
j = 1, 2, 6). In Variant III, it was assumed that
B11 = B22 = B12 = B21 = 0, whereas in Variant IV – only B66 = 0. More-
over, for all the variants of columns under consideration in this
study, the following elements of the stiffness matrix satisfied the
following relationships:

A16 ¼ A26 ¼ D16 ¼ D26 ¼ B16 ¼ B26 ¼ 0 ð4Þ

Aij ¼ Aji ð5Þ

Dij ¼ Dji ð6Þ

Bij ¼ Bji ð7Þ
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