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a b s t r a c t

The present article reports on the development of a nonlinear laminated plate theory for fiber reinforced
composites. The model uses material nonlinearity, i.e. nonlinear stress-strain relationship to describe the
effective second (Cij) and third order (Cijk) elastic constants for a laminated plate. Since each lamina can
have different fiber orientation, the rotation of the second and third order stiffness matrices were also
incorporated into the model. Theoretical results for variation of third order elastic constants and the
acoustic nonlinearity parameter with rotation angle have been presented. To validate the laminated plate
theory, Nonlinear Resonant Ultrasound Spectroscopy (NRUS) experiments were carried out on seven dif-
ferent laminate systems with different fiber orientations and laminate sequences. Literature values for
the elastic constants were used to predict the acoustic nonlinearity parameter and third order elastic con-
stant. These were further compared with experimentally determined values, and a good agreement in the
trend was observed. Since there are several combinations of fiber orientation and laminate sequence, the
present theory will be helpful to determine the effective nonlinear properties of any given laminate
system.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of higher order elastic constants has been well
explored in the field of nonlinear elasticity of solids. This has
gained prominence in the recent history due to its wide applica-
tions in material science, biomechanics, and more. While linear
theories of elasticity can describe the response very well for small
deformations and strain amplitudes in vibration, they tend to
break down when it moves into large deformation and finite strain
amplitude regimes. This required new theories which can model
the response accurately across wide strain ranges (low to high
range). In general, nonlinear elasticity theories of solids can be split
broadly into geometric nonlinearity, material nonlinearity and
combination of both. Geometric nonlinearity describes the nonlin-
ear relationship between strain and displacement, while material
nonlinearity describes the nonlinearity of stress-strain relation-
ship. Based on the material and physical conditions, both descrip-
tions have been used to model the material response. Rubber for
example is a material which can undergo large deformations and
whose nonlinear characteristics are well explored in the literature.
Such materials are strongly nonlinear, and therefore have been

studied carefully. In contract, most engineering materials such as
copper, aluminum, composites etc. are weakly nonlinear (material
nonlinearity) and their nonlinearity can be more difficult to
characterize.

The concept of higher order elastic constants comes from the
Taylor series expansion of the strain energy density to accurately
model the nonlinearity of the material response at higher strain
amplitudes [18]. Note that this is still in the elastic region and well
before the plastic region. There are other studies which investigate
the nonlinearity arising from plasticity [36] and damage [9,38] in
composites as well. The coefficient of the zeroth order strain term
is called the second order elastic constants (SOEC) and the higher
order coefficients of the higher order strain terms, n = 2, 3, 4 etc.
are called the higher order constants, namely third order elastic
constants (TOEC), fourth order elastic constant (FOEC), and so on.
SOEC have been traditionally used to describe the mechanical
properties of the material, i.e. for an isotropic material, the Young’s
modulus, shear modulus and Poisson’s ratio, or the Lame con-
stants; k and l. However, with increased interest in the nonlinear
properties of the material, the TOEC and FOEC will eventually be
utilized similar to the SOEC. Mathematically, they are coefficients
of a Taylor series expansion, however, they possess a much deeper
physical meaning. The higher order constants for crystals can be
determined theoretically using empirical force-constant models,
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molecular-dynamics simulations, and first principles total-energy
methods using density function theory (DFT) [43] [15]. The TOEC
are especially important because they are dependent on various
lattice parameters such as interatomic potential, ion-electron
pseudopotential etc. [15]. At an atomistic level, they describe the
lattice anharmonicity, which is defined as the anharmonic
response of lattice vibration. TOEC have also been shown to be
more sensitive to changes in material microstructure [6]. Although
the TOEC can be determined theoretically for crystalline structures,
obtaining theoretical higher order constants from first principles
for heterogeneous structures such as fiber reinforced composites
which are mixtures of two dissimilar materials can be challenging.
Since each layer can have a set of TOEC, the nonlinear response of
the entire laminate or layered structure will be controlled by effec-
tive TOECs. This will be essential for laminated structures such as
metallic plates with polymer coatings, multi-material laminated
armor and composite materials. Focusing on composite materials,
extensive work has been done on experimental characterization
of the nonlinear properties of composites [12,17,2,7,42]. Most of
the nonlinear studies deal with shear properties and characterize
the higher order shear constants. From a modeling perspective,
the use of nonlinear hyper-elastic material models, such as the
Ramberg-Osgood model [21,4,10,24, and the Ogden model
[27,33] are well known for composites. The idea of deriving the
constitutive nonlinear stress-strain relationship from the strain
energy function is well known for crystalline and metallic struc-
tures. This was first used for composites by Hann and Tsai [12],
who described the system with only the fourth order shear proper-
ties. There are several ensuing works which utilized the hyper-
elastic model for nonlinearity, but most were limited to metallic
structures. More recently the works by Prosser et al. [30] and
Elmore at al. [11] are considered the most comprehensive work
for composites. Rauter et al. [31] had used the hyper-elastic Mur-
naghan’s material model [25] to study cumulative second har-
monic generation of a propagating guided wave and eventually
applied it for fatigue monitoring of composite structures.

The objective of the present work is to build on the strain
energy model for nonlinearity prescribed earlier and apply it for
laminated composites. Each individual layer of fiber reinforced
composite is orthotropic, and the relative fiber orientation will give
rise to a different set of linear and nonlinear elastic constants.
There is only one instance where the entire set of SOEC and TOEC
of carbon fiber reinforced composites have been measured [30].
Also, the acoustic nonlinearity parameters which can also be used
to obtain the higher order constants has been measured accurately
only once [11]. There are several techniques which can be used to
experimentally measure the TOEC. The well-known technique in
composites community is static testing followed by curve fitting
to obtain nonlinear coefficients [20]. The most commonly used
technique in the dynamics community is acousto-elasticity [16]
followed by finite amplitude waves [37] [5], and other techniques
such as collinear wave mixing [23], coda wave interferometry [28],
dynamic acousto-elastic (DAE) [32]. More recently, nonlinear reso-
nance ultrasonic spectroscopy (NRUS) [40,8] has also been used to
measure TOEC. Among these techniques, acousto-elasticity and
finite amplitude waves are considered as benchmark techniques,
and the rest are considered non-traditional techniques with each
having its own advantages and disadvantages. The NRUS (and
DAE possibly) in particular can be used for measuring at least
one TOEC in relatively thin structures that cannot be tested using
acousto-elasticity or finite amplitude waves.

The present work aims to develop a nonlinear laminated plate
theory using nonlinearity elasticity, and determine the effective
TOECs of a laminated structure. A nonlinear theory which includes
the elastic material nonlinear properties of each lamina of a lami-
nated structure, and predicts the effective linear and nonlinear

properties has not been explored in the literature. Since such a the-
ory will be applied to fiber reinforced composites, the effect of fiber
orientation, i.e. rotation of the SOEC and TOEC orthotropic stiffness
was also accounted for. The influence of fiber orientation on the
SOEC, TOEC and the acoustic nonlinearity parameter (b) was stud-
ied using their analytical relationships. Finally, to validate the non-
linear laminate theory, seven laminate systems were chosen and
NRUS experiments were carried out to determine the effective
TOEC and SOEC. Theoretical values for TOEC and SOEC were used
from a previous study to compare against the experimental results
and a good agreement in trend was observed.

2. Nonlinear laminated plate theory

In classical elasticity, the strains are assumed to be small and
thus the strain energy function is a homogenous quadratic function
of strains. However, when the strains are not infinitesimal, the
higher order terms will begin to influence the strain energy func-
tion [18] which is given by:

u ¼ uþ cijgij þ
1
2
cijklgijgkl þ

1
6
cijklmngijgklgmn ð1Þ

where gij are the Lagrangian strain components and c’s are the
material constants [3]. If the initial energy and cubical dilation of
the body are zero, then the first two terms of Eq. (1) can be
neglected,

u ¼ cijklgijgkl þ cijklmngijgklgmn ð2Þ

cijkl are the second order elastic constants of the material, and it is a
fourth order tensor with 81 constants. It can be reduced to 21 inde-
pendent constants for a triclinic material, and can further be
reduced using symmetries. For an orthotropic material, it reduces
further to 9 constants, for transversely-isotropic material; 6, and
finally for isotropic materials; 2. The cijklmn are the third order coef-
ficients and it is a sixth order tensor with 729 constants, which
reduces to 56 for triclinic material, 20 constants for orthotropic
material, and 3 for isotropic materials [14]. Using Voigt notation,
the constant indices can be rewritten as: cijkl ? CIJ and cijklmn ? CIJK,
with ij = 11, 22, 33, 23, 31, 12? I = 1,2,3,4,5,6.

Using the strain energy definition, the first Piola-Kirchhoff
stress tensor can now be written as [13]:

rij ¼ Cijklekl þMijklmneklemn ð3Þ

where, M is given by:

Mijklmn ¼ Cijklmn þ Cijlndkm þ Cjnkldim þ Cjlmndik ð4Þ
d is the Kronecker-delta function.

2.1. Nonlinear lamina analysis

In fiber reinforced composites, a continuous lamina is defined
as a single layer of fibers arranged together so that the fibers are
parallel. An assembly of several lamina or layers is called as a con-
tinuous fiber laminate. A global coordinate is defined (x,y,z) for the
plate, and a local coordinate which coincides with the fiber orien-
tation is defined as (1,2,3) as shown in Fig. 1. The generalized
stress-strain relationship in Eq. (3) can be reduced to the x-y (or
1–2) plane since the lamina are very thin and don’t support rz

(or r3). The various stress in the 1–2 plane are shown in Fig. 1.
Expanding the stress-strain relationship:

r11 ¼ C11211 þ C12222 þ C16212 þM111211211 þ 2M112211222

þ 2M116212211 þM122222222 þ 2M126222212

þM166212212 ð5Þ
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