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a b s t r a c t

In this paper, a rotating thin-walled beam theory incorporating fiber-reinforced and piezo-composite is
developed and used to study the active control for vibration suppression. The structural model accounts
for transverse shear strain, primary and secondary warpings, pretwist and presetting angles. In addition,
the centrifugal stiffening effect, tennis-racket effect, flapping-lagging-transverse shear and extension-
twist couplings are accounted as well. Based on a negative velocity feedback control algorithm, the effec-
tive damping performance is optimized by studying anisotropic characteristics of piezo-actuators and
elastic tailoring of the host structure. Moreover, relations between damping control authority and design
factors, such as rotor speed, presetting and pretwist angles are investigated in detailed.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years a large amount of work are devoted to the mod-
eling and behavior of composite rotor blades [1–5]. Among there
works, Rehfield et al. [6] discussed the non-classic behavior of a
closed cross-section composite thin-walled beam. Chandra et al.
[7] investigated the vibration characteristics of rotating composite
box beams on both experimental and theoretical aspects. Song
et al. [8,9] developed a rotating composite thin-walled beam
theory feathering lateral bending-vertical bending elastic coupling
effect. Oh et al. discussed effects of pretwist and presetting on
coupled bending vibrations [10]. He also investigated the
twist-extension elastic coupling effect on rotary composite
structure [11].

Rotor blades operate in a unsteady and complex aerodynamic
environment. They are also characterized by a complex structural
behavior. For these reasons active control is deemed to te a promis-
ing technology for the design of new high performing blades
[12,13]. Because piezoelectric materials have a series of desirable
characteristics, such as self-sensing, structure embeddability, fast
response and covering a broad range of frequency, they are often
proposed for the design of active blades [14–16]. In order to over-
come the drawbacks of the typical piezoceramic actuator, such as
the vulnerable ability to damage and the fact that they can hardly

conform to a curved surface, piezo-composite actuators, e.g., Active
Fiber Composite (AFC) [17] and Macro-Fiber Composite (MFC) [18]
were developed. In the existing literatures, a lot publications on
modeling or studying adaptive thin-walled structure are based
on a piezoelectric bending moment control system [19–24], but
they lack explicit discussions for transverse shear force and twist
moment actuations. Thus a comprehensive study allowing to get
a better insight into the influence of piezoelectric extension, trans-
verse shear, twist, bimoment and bending actuations on rotary
thin-walled structures is still interesting.

In this paper, a geometrically nonlinear rotating thin-walled
beam theory incorporating piezo-composite is developed. In addi-
tion, transverse shear strain, primary and secondary warping inhi-
bitions, three-dimensional strain, centrifugal stiffening and tennis-
racket effects [25] are taken into account. The circumferentially
uniform stiffness (CUS) [26] lay-up configuration that yields lateral
bending-vertical bending and twist-extension couplings is applied
for the rotary structure [11,27,28]. The governing equations and
the boundary conditions are derived via Hamilton’s principle.
Numerical studies are based on the Extended Galerkin’s Method.
Based on a negative velocity feedback control methodology, active
control for vibration suppression is optimized via the study of tai-
loring technology and anisotropic characteristic of piezo-
composite. In addition, the influences of design parameters, such
as rotor speed, presetting and pretwist angles are investigated,
and pertinent conclusions are outlined.
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2. Basic assumptions and kinematics

2.1. Basic assumptions

The geometric configuration and the chosen coordinate systems
of the rotary thin-walled beam are shown in Figs. 1 and 2. The iner-
tial reference system ðX;Y; ZÞ is attached to the center of the hub O
(considered to be rigid), while the rotating axis system ðx; y; zÞ is
located at the blade root with an offset R0 from the rotation axis
O, see Fig. 1. The unit vectors associated with the frame coordinates
ðX;Y ; ZÞ and ðx; y; zÞ are defined as ðI; J;KÞ and ði; j;kÞ, respectively.
Besides the rotating coordinate system ðx; y; zÞ, a local coordinate
system ðxp; y; zpÞ is also defined, where xp and zp are the principal
axes of an arbitrary beam cross-section, see Fig. 2. In addition, a
surface coordinate system ðs; y;nÞ on the mid-line contour of the
cross-section is considered in Fig. 2. Coordinate systems ðx; y; zÞ
and ðxp; y; zpÞ are related by the following transformation

xðs; yÞ ¼ xpðsÞ cos bðyÞ þ zpðsÞ sin bðyÞ;
zðs; yÞ ¼ �xpðsÞ sin bðyÞ þ zpðsÞ cos bðyÞ;

�
ð1Þ

where the linear pretwist angle bðyÞ can be assumed as

bðyÞ ¼ c0 þ b0y=L; ð2Þ in which c0, b0 and L denote the presetting angle, the pretwist angle
of the cross-section at the beam tip and the length of the beam,
respectively.

The rotary thin-walled structure is modeled assuming that the
cross-section is preserved during the deformation. Beside this
assumption, already adopted e.g. in Ref. [29], no other significant
assumptions to the kinematic description are introduced; in partic-
ular, both the primary and secondary (thickness) warping effects
are included and the transverse shear effect are taken into account.
Note also that the centrifugal stiffening and tennis-racket effects
[25] are accounted for in the present approach.

2.2. Kinematics

It is useful to express the position vector R of an arbitrary point
Mðx; y; zÞ belonging to the deformed beam, measured from a fixedFig. 1. A schematic description of the blade.

Fig. 2. Geometry of the pretwisted beam with a rectangular cross-section
(CUS lay-ups).

Nomenclature

aij 1-D global stiffness coefficients
AX

i piezo-actuator coefficients, see Eq. (22)
bw bimoment of the external force per unit span
bij inertial coefficients
2b;2d width and depth of the beam cross-section, see Fig. 2
Bw bimoment
Fw, aðsÞ primary and secondary warping function, respectively
ki control gains in the velocity feedback control in Eqs.

(39) and (40)
L length of the beam, see Fig. 2
mx;my;mz external moments per unit span, about x-, y- and z-

axes, respectively
Mx;Mz bending moments about x and z axes, respectively
My torque about y axis
Nhp;Nh;Np numbers of all layers, host layers and piezo-

composite layers, respectively
px; py;pz external forces per unit span
PðyÞ distribution function along span for the actuator
Qij reduced elastic coefficients
Qx;Qz transverse shear forces in the x- and z-directions
R0 radius of the hub, see Fig. 2
R position vector of a point on the deformed beam, see Eq.

(3)
ðs; y;nÞ local coordinate system on the cross-section, see Fig. 2

Ty axial force in the y-direction
u0; v0;w0 displacement components of the cross-section along

x; y; z axes, see Fig. 2
Vi voltage parameters, see Eqs. (23)
ðx; y; zÞ rotating axis system located at the blade root, see Fig. 1
ðxp; yp; zpÞ local coordinate system for an arbitrary beam cross-

section, see Fig. 2
ðX;Y ; ZÞ inertial reference system attached to the center of hub
bðyÞ pretwist angle, see Eq. (2)
b0; c0 pretwist angle at beam tip and presetting angle at beam

root, respectively
qðkÞ mass density of the kth layer in Eq. (15a)
Ct nonlinear force related to twist motion
hh; hp ply-angles of host structure and piezo-actuator
hx;/; hz rotations of the cross-section about the x, y and z axes,

see Fig. 2
X rotating speed of hub
d variation operator
dp; ds tracers that take the value 1 or 0
_ðÞ; €ðÞ; ðÞ0; ðÞ00 @ðÞ=@t; @2ðÞ=@t2; @ðÞ=@y; @2ðÞ=@y2
XT transpose of the matrix or vector XH
c;
R L
0 integral along the cross-section and the span, respec-

tively
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