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A B S T R A C T

Governing equations are developed for bending of an elastic circular membrane under in-plane tension (pres-
tress) and out-of-plane uniform pressure or concentrated force. These relations are applied to fitting observations
on nanomembranes made of CVD-grown and mechanically exfoliated graphene, graphene oxides with various
concentrations of defects, molybdenum disulfide, bismuth selenite, and tungsten diselenide. Good agreement is
demonstrated between the experimental data and results of simulation. It is shown that the elastic modulus per
layer of a multilayer membrane is independent of the number of layers n, whereas the prestress grows ex-
ponentially with n. Simple equations are suggested to describe the effect of defects in the crystalline structure of
a nanomembrane on its mechanical properties. These equations and validated by comparison of the model
predictions with observations of graphene oxide.

1. Introduction

A novel family of 2D crystalline materials, including graphene [1],
boron nitride [2], transitional metal oxides and dihalcogenides [3,4],
silicene and germanane [5] have attracted substantial attention in the
past decade due to their fascinating physical properties, as well as a
wide range of potential applications as functional materials for fuel
cells, solar cells, batteries, supercapacitors, flexible displays, field-effect
transistors, photovoltaic, photodetection, and photocatalysis devices,
nanoelectronic and nanoelectromechanical systems, and membranes
with nanometer-sized pores for filtration, ion retention, and gas se-
paration [6,7]. A characteristic feature of the 2D materials is that their
electronic structure, as well as magnetic, electrical, and light-emission
properties are strongly affected by deformation [8,9], which opens a
way for precise, fast, and reversible modulation of these properties by
external forces (strain engineering [10]).

To study mechanical properties of a 2D material, a membrane
formed by an atomic monolayer or a few layers bridged by adhesion
forces is suspended over a cylindrical cavity in a substrate. Radius a of
the cavity exceeds thickness h of the membrane by several orders of
magnitude. Bending of the membrane occurs under the action of a
uniform pressure q or a concentrated force P applied at its center. Under
the assumptions that (i) the response of the 2D material is isotropic and
linear elastic with in-plane Young’s modulus E and Poisson’s ratio ν,
and (ii) the maximum deflection W exceeds strongly thickness h, de-
formation of a membrane is described by the Foppl–von Karman model
in the membrane regime. According to this concept, the external load (q

or P) is connected with the maximum deflection W by the semi-em-
pirical equations [11,12]
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where σ0 stands for the prestress (in-plane tension with dimension N/
m) induced by interaction between the membrane and the substrate,

=E Eh2D denotes the 2D elastic modulus (with dimension N/m), and
= − − −φ ν ν(1.049 0.146 0.158 )2 1.
The applicability of the Foppl–von Karman model requires the fol-

lowing conditions [13]: (i) the energy of out-of-plane bending is small
compared with the energy of in-plane stretching, and (ii) the prestress is
small compared with the external load. For a circular membrane under
uniform pressure these restrictions read ≪Eh qa3 4 and ≪σ Eq a( )0 2 2 1

3 .
Although these inequalities are fulfilled in experiments, treatment of
observations reveals large deviations between the measured elastic
moduli and their theoretical predictions [14,15]. A number of simpli-
fications used in derivation of Eqs. (1), (2) may be a reason for these
discrepancies. To check this hypothesis, governing equations for
bending of a circular membrane are developed without additional as-
sumptions, and adjustable parameters in these relations are found by
matching observations. We intend to demonstrate that our estimates of
the Young’s modulus (i) differ substantially from those grounded on
Eqs. (1), (2) and (ii) are close to predictions based on the first principles
calculations.
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The other objective of this study is to examine how elastic modulus
E and prestress σ0 evolve with number of layers n in a multilayer
membrane. Eqs. (1) and (2) do not provide an indisputable answer to
this question, see [16] and the references therein. It has been revealed
that E is independent of n [17], grows with n [18], decreases with n
[19], or does not show a clear dependence on thickness of a multilayer
structure [20]. The same ambiguity is demonstrated for the prestress σ0,
for which different trends have been reported. This uncertainty may be
explained by two reasons: (i) an unavoidable inaccuracy of measure-
ments in bending tests on nanostructures, and (ii) the presence of (at
least, hypothetical) mechanisms for the growth (driven by reduction of
wrinkles in individual nanosheets due to van der Waals interactions
between layers) and decay (induced by interlayer sliding and formation
of defects in nanosheets under layer-by-layer assembly) in E with
number of layers. Our aim is to show that E remains independent of n,
while σ0 grows exponentially with number of layers (this tendency is
revealed for nanomembranes whose thickness h is small compared with
maximum deflection W, and it cannot be extrapolated to bulk mate-
rials).

Our third objective is to assess the influence of defects in the crys-
talline structure of a nanomembrane on its mechanical properties.
These defects are developed due to chemical treatment of graphene-like
materials at the stage of exfoliation of bulk materials (preparation of
graphene oxide and reduced graphene oxide from graphite), as well as
under etching of sacrificial supports employed in (i) preparation of CVD
(chemical vapor deposition)-grown membranes and (ii) transfer of na-
nosheets to a substrate for testing.

The exposition is organized as follows. Governing equations for
bending of a thin circular membrane are formulated in Section 2. De-
formation of prestressed membranes under the action of a uniform
pressure and a concentrated force is described in Sections 3 and 4, re-
spectively. Analysis of observations on bending of multilayer mem-
branes is conducted in Section 5. The effect of defects on the mechan-
ical properties of graphene oxide membranes is discussed in Section 6.
Concluding remarks are formulated in Section 7.

2. Bending of a circular membrane

We consider a circular membrane with radius a and constant
thickness h. An arbitrary point of the membrane is described by
Cartesian coordinates xk with unit vectors =i k( 1,2,3)k and cylindrical
coordinates =r θ z x, , 3 with unit vectors ir , i i,θ 3. The 2D strain tensor in
the membrane is denoted by = ∊ i ijk j k∊∊ , and the 2D stress tensor reads

=σ i iσjk j k, where summation over repeated indexes =j k, 1,2 is pre-
sumed. We suppose that the initial state of the membrane does not
coincide with its reference (stress-free) state and denote by = ∊ i ijk j k

0 0∊∊
the tensor of residual strains. The 2D elastic strain tensor reads

= − ,e
0∊∊ ∊∊ ∊∊ (3)

and its first and second invariants are given by

= =IJ J: , : ,e1 e e2 e e∊∊ ∊∊ ∊∊

where I stands for the 2D unit tensor, and the colon denotes convolu-
tion. The specific mechanical energy of the membrane per unit area in
the plane x x( , )1 2 reads

=
+

⎛
⎝

+
−

⎞
⎠

U Eh
ν

J ν
ν

J
2(1 ) 1

,e2 e1
2

(4)

where E denotes the Young’s modulus (with the dimension N/m2), and
ν stands for Poisson’s ratio (these parameters are treated as constants).
The 2D stress tensor σ is expressed in terms of the 2D strain tensor ∊∊ by
the formula

= ∂
∂
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Combination of Eqs. (4) and (5) implies that
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Deformation of the membrane is described by the displacement
vector =u iuk k with =u u x x( , )k k 1 2 . Presuming ∊∊ to coincide with the
Lagrange strain tensor, we calculate its components by means of the
conventional relations

∊ = + +u u u u1
2

( ),ij i j j i k i k j, , , , (7)

where = ∂ ∂u u x/i j i j, . In what follows, we focus on deformations with
small gradients of in-plane displacements,

≪ ≪ ≪ ≪u u u u| | 1, | | 1, | | 1, | | 1,1,1 1,2 2,1 2,2

and moderate rotations around the axes i1 and i2,
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Under these conditions, Eqs. (7) read
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where =w u3 denotes deflection of the membrane, and = +u i iu u1 1 2 2

stands for the in-plane displacement vector.
To develop equilibrium equations for bending of the membrane

under the action of pressure =q q x x( , )1 2 directed along the vector i3, we
introduce the functional

∫ ∫= −U a qw aΨ d d ,
Ω Ω (9)

where =a x xd d d1 2 is the elementary area of the domain Ω occupied by
the membrane in the x x( , )1 2 plane, the first term stands for the me-
chanical energy stored in the membrane, and the other term equals the
work on external forces. For definiteness, we consider deformation of a
membrane with a clamped edge,

= =∂ ∂uw 0| 0, | ,Ω Ω (10)

where ∂Ω stands for the boundary of Ω. Calculating variation of Ψ and
equating it to zero, we arrive at the equilibrium equations

= + =σ σ w q0· , : 0,  (11)

where  is the 2D gradient operator, the dot stands for inner product,
and the colon denotes convolution.

We now focus on axisymmetric deformation of a circular membrane
under the action of pressure q (that depends on radius r only) and equi-
biaxial prestress,
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Here ∊0 is a constant, and the sign “−” means that the membrane is
under pretension before loading. Under these conditions, the displace-
ment vector is determined by = +u i iu r w r( ) ( )r r 3, where ur denotes
radial displacement, and the in-plane stress tensor is given by

= +σ i i i iσ r σ r( ) ( )rr r r θθ θ θ, where σ σ,rr θθ stand for the radial and tan-
gential stresses. A set of two differential equations for the unknown
functions σrr and w is derived in Appendix A. The first equation reads
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The other equation can be presented in two equivalent forms
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The boundary conditions for Eqs. (13) and (14), (15) are given by
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