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a b s t r a c t

The communication pattern used by applications can have a major influence on the perfor-
mance of non-contiguous processor allocation in multicomputers. In this paper, the perfor-
mance of well-known non-contiguous allocation strategies for 2D mesh multicomputers is
re-visited considering several important communication patterns. These are the Near
Neighbour, Ring, Divide and Conquer Binomial Tree (DQBT), Fast Fourier Transform (FFT),
and Random communication patterns. The allocation strategies investigated are the Greedy
Available Busy List (GABL), Multiple Buddy Strategy (MBS), Adaptive Non-contiguous Allo-
cation (ANCA), and Paging(0). They are compared using detailed flit-level simulations. The
results show that GABL is overall superior to the remaining non-contiguous allocation strat-
egies. It produces superior average turnaround times and mean system utilization.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Various multicomputer architectures have used the mesh interconnection network because of its simplicity, structural
regularity, partitionability, flexible routing, and ease of implementation [1,4,6,9–15,18,20,24–26,28,32]. Also, the mesh
topology is suitable for a variety of applications, including matrix computations, and image processing [1]. Both two-dimen-
sional (2D) and three-dimensional (3D) meshes and tori have been used in recent commercial and experimental multicom-
puters, such as the iWARP [5], the IBM BlueGene/L [31], the Delta Touchstone [17], the Caltech Mosaic [30], the Intel Paragon
[16], and the Cray XT3 [7].

Efficient processor allocation and job scheduling are critical if the full computational power of large-scale multicomputers
is to be harnessed effectively [4,12]. Processor allocation is responsible for selecting the set of processors on which parallel
jobs are executed, whereas job scheduling is responsible for determining the order in which jobs are executed [4,12,18,25].

In most processor allocation strategies proposed in the literature for mesh-connected multicomputers, a parallel job is
allocated a distinct contiguous sub-mesh of processors of the size and shape it has requested. This contiguous allocation
can result in high external processor fragmentation, which occurs when free processors are not allocated to a parallel job
because of the shape constraint. A recurring outcome in allocation studies is that contiguous allocation suffers from low
overall system utilization [10,12,28]. It can reduce system utilization to levels unacceptable for government-audited systems
in the USA [8]. Therefore, non-contiguous allocation strategies have been proposed with the goal of increasing system uti-
lization by allowing dispersed free processors to be allocated to a parallel job [6,13,25,28].

Although non-contiguous allocation increases message contention in the network, several previous studies have shown
that lifting the contiguity condition can be expected to improve overall system performance [6,18,25,28]. It is the introduc-
tion of wormhole switching [27] that has lead researchers to consider non-contiguous allocation in multicomputers with
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long communication distances, such as the 2D mesh [6,25,28]. This is because one of the main advantages of wormhole
switching over earlier switching techniques, e.g. store-and-forward, is that message latency depends less on the distance
messages traverse from sources to destinations.

In this paper, we compare, using detailed simulations, the performance of existing well-known non-contiguous allocation
strategies considering several important communication patterns. The allocation strategies investigated are the GABL [25],
MBS [28], ANCA [6,24], and Paging(0) [28] strategies. These strategies have been selected because they have been shown to
perform well in [6,13,25,28]. The communication patterns we consider are the Ring [22,28], Divide and Conquer Binomial
Tree [21,27–29], Fast Fourier Transform [2,19,27,28], Random [18,25,28], and Near Neighbour patterns. Unlike previous re-
lated works [13,18,20,24,25,28], we consider the Near Neighbour communication pattern in this paper to study the effect of
this important pattern on the performance of non-contiguous allocation. The communication patterns considered in this pa-
per have been selected because they have been used in related works [13,18,20,24,25,28] and because they are common. The
details of these communications patterns will be provided in Section 4. In the simulation experiments, communication is
simulated at the flit-level. The results show that GABL is overall better than the previous non-contiguous allocation strate-
gies, in terms of the average turnaround time and mean system utilization performance parameters.

The rest of the paper is organized as follows. Section 2 provides some preliminaries. Section 3 contains a brief overview of
the non-contiguous allocation strategies considered in this study. Simulation results are presented in Section 4. Finally, Sec-
tion 5 concludes this paper.

2. Preliminaries

The target system is a W � L 2D mesh, where W is the width of the mesh and L is its length. Every processor is denoted by
a pair of coordinates (x, y), where 0 6 x < W and 0 6 y < L [25]. Each processor is connected by bidirectional communication
links to its neighbouring processors, as depicted in Fig. 1. This figure shows a 4 � 4 2D mesh, where allocated processors are
denoted by shaded circles and free processors are denoted by white circles. Given the system allocation state shown in Fig. 1,
if a job requests the allocation of sub-mesh of size 2 � 2, contiguous allocation fails because no 2 � 2 sub-mesh of free pro-
cessors is available, however four free processors can be allocated to the job if allocation is non-contiguous.

The following definitions have been adopted from [25].

Definition 1. A sub-mesh S(w, l) of width w and length l, where 0 < w 6W and 0 < l 6 L is specified by the (x, y, x0, y0),
where (x, y) are the coordinates of the base of the sub-mesh and (x0, y0) are the coordinates of its end. For example (0, 0, 2, 1)
represents the 3 � 2 sub-mesh S in Fig. 1. The base node of the sub-mesh is (0, 0), and its end node is (2, 1). The size of S(w, l)
is w � l processors.

Definition 2. An allocated sub-mesh is one whose processors are all allocated to a parallel job.

Definition 3. A free sub-mesh is one whose processors are all not allocated.

Definition 4. A suitable sub-mesh S(w, l) is a free sub-mesh that satisfies the conditions: w P a and l P b assuming that the
allocation of S(a, b) is requested, where a and b are the side lengths of the allocation request.

3. Processor allocation strategies

Advances in switching techniques, in particular wormhole switching [27], have made communication latency less sensi-
tive to the distance between communication end nodes [6,25]. This has made allocating a job to non-contiguous processors
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Fig. 1. An example of a 4 � 4 2D mesh.
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