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a b s t r a c t

The present study considered the free and forced vibration of cracked fiber metal laminated (FML) beams
with a damper subjected to a moving load, and the detection of the cracks by using continuous wavelet
transform (CWT). The beam is regarded as multi segments which are assumed to obey the Euler-Bernoulli
beam hypothesis and the crack is modeled as rotational spring with sectional flexibility. The modal
expansion theory and Newmark method are employed to solve the dynamic responses of FML beam
numerically. Two classes of boundary conditions are considered and the dynamic responses at the tip
of a FML cantilever beam with a single crack are obtained for various load velocity, and the outcome
results have been compared to the results obtained by literature. The influences of crack depth, crack
location, ply angle of the fiber layer, stiffness coefficient of the damper and velocity of the moving load
on free vibration and forced vibration of FML cantilever beams are investigated. Numerical results indi-
cate that the above-mentioned effects play a very important role on both free vibration and dynamic
responses of the beam. In the end of the numerical examples, continuous wavelet transform is used to
detect the location of the cracks of a clamped-clamped FML beam.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Structures under the action of the moving load or mass are easy
to find in engineering such as bridges, roads and some aerospace
equipment. Due to the diversities of structures and materials and
the complexity of loads, the dynamic behaviors of suchlike
mechanical models become interesting topics for both structural
and material researchers. Quite a few investigations have been
reported in the analyses of dynamic responses of the structures
subjected to moving loads. For homogeneous isotropic structures,
a typical example, Frýba [1] took overall consideration of the
dynamic deflections and stresses of all kinds of beams, rectangular
plates and three-dimensional structures under the action of mov-
ing constant load, harmonic load and multi-axle system. Many
investigators focus attentions on composite structures subjected
to moving loads. Simsek [2–4] studied dynamic responses of the
functionally graded material beam subjected to moving constant
load and harmonic load either analytically or numerically. For
the laminated composite structures, Malekzadeh [5] investigated
the three-dimensional dynamic analysis of laminated composite

plates subjected to moving load by using differential quadrature
method.

The literatures mentioned above are concerned with the intact
structures. But in fact, due to the manufacturing processes and
operating conditions, cracks always exist in structures, which can
introduce local flexibilities, reduce the stiffness and change the
dynamic behavior of the structure. For dynamic behavior of struc-
tures with a crack or multi cracks under the action of moving loads,
numerous studies [6–11] have been reported based on different
crack model. The most popular model for the crack in beam is a
massless rotational spring with sectional flexibility. Based on this
model and Euler-Bernoulli beam theory, Lin and Chang [12] stud-
ied the forced responses of cantilever beams with a single-sided
open crack subjected to a moving point load. Shafiei et. al [13] pro-
posed an analytical solutions for free and forced vibrations of a
multiple cracked Timoshenko beam subject to a concentrated
moving load. For cracked inhomogeneous beams, Yang et. al [14]
investigated their dynamic behavior under an axial force and a
moving load based on classical Euler-Bernoulli beam hypothesis
and rotational spring model and modal expansion technique. Yan
et al. [15] studied the dynamic behavior of edge-cracked
Timoshenko functionally graded beams on an elastic foundation
under a moving load.
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Cracks make structures more flexible, as concluded by all of the
literature concerned with crack problemsmentioned above. Hence,
it is necessary to detect cracks in structures. The crack identifica-
tion turns into another pop topic which has attracted a great many
researchers. One of the most used methods to study damages in
structures, especially in bridges, is the wavelet transform. For
example, Zhu and Law [16] studied the crack identification of
bridge beam from operational deflection time history based on
wavelet transform and the results are validated by both simulation
and experiment; Khorram et. al [17] identified the location of the
crack of a simply supported beam by applying continuous wavelet
transform (CWT) to the displacement at midspan during the time
used in the fixed sensor approach, and the displacement of the
moving load during the time used in the moving sensor approach,
respectively, and inferred that moving sensor approach is more
sensitive. In the last few years, it is common occurrence in the lit-
erature [18–21] for damage detection for beam-type structure
based on wavelet transform and moving load.

Fiber-metal laminates (FMLs) are high-performance hybrid
structures comprised of metal alloy sheets and fiber-reinforced
plies, originally invented by Delft University of Technology [22]
in the 1980s. The combination of good impact resistance of the
metals and the better lightweight property of the fiber-reinforced
composites has made it of great use in aerospace and satellite
structures. Theoretical and experimental studies have been per-
formed on the analysis of fiber metal laminated (FML) structures
by many researchers. As examples, Reyes et. al [23] studied the
quasi-static and impact behaviors of fiber metal laminates by
experiment; Shooshtari and Razavi [24] investigated the linear
and nonlinear free vibrations of fiber metal laminated rectangular
plates by using the Galerkin method and multiple time scales
method. In FML structures, crack damage can often result in stiff-
ness degradation and has evident influence on the mechanical
properties of the structures. Considering the wide applications of
FML structures, it is important to study the dynamic response of
FMLs with crack damage subjected to moving loads and detect
the crack of the structures.

The current study is to present the free and forced vibration of
FML beams with a damper carrying a moving load and the detec-
tion of locations of cracks by using CWT. The beam is regarded as
multi segments which are assumed to obey the Euler-Bernoulli
beam hypothesis and the crack is modeled as rotational spring
with sectional flexibility. Two classes of boundary conditions will
be considered, and the influences of crack depth, crack location,
stiffness coefficient of the damper and velocity of the moving load
on both free vibration and dynamic responses of FML cantilever
beams will be investigated. The conclusions of this research may
be a useful theoretical reference to optimal design as well as dam-
age detection of FML structures.

2. Dynamic behavior of a multi-cracked FML beam

Consider a fiber-metal laminated beam having length L, width b
and thickness h with N cracks connected to a viscous damper of
stiffness k, damping coefficient c, and mass me shown in Fig. 1.
The Cartesian coordinate system O-xz is established on the geo-
metric middle plane of the beam (z ¼ 0). The N single-sided open
cracks of the beam located at xi of depth di (i ¼ 1;2; . . . ;N). The
beam is divided into (N + 1) segments by the N cracks and the
length of the ith segment is li (i ¼ 1;2; . . . ;N þ 1).

2.1. Governing equation of motion

Based on Euler-Bernoulli beam theory, the governing equation
of motion for the whole beam is
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where w ¼ wðx; tÞ and r ¼ rðtÞ are the deflection of the whole beam
and absolute position of the damper, respectively; dðxÞ and HðxÞ are
the so-called Dirac and Heaviside functions which can be defined asZ 1
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k and c are the stiffness and damping coefficients of the damper,

respectively; t denotes the time; I0 ¼ b
R h
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the beam and qðjÞ is the material density for jth layer; D is the
reduced bending stiffness of the beam given as
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11 is the stiffness coef-

ficient of the jth layer given as
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where, hj is the angle of the jth ply orientation of the fiber and the
elastic modulus Eij are given by follows:
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Fig. 1. Structural schematic for a cracked fiber-metal laminated beam with a damper.
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