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a b s t r a c t

Model calibration is usually based on trial-and-error procedures that, in turn, rely on expert judgment or
previously acquired experiences for similar phenomena. Efficient and reliable procedures for model cal-
ibration of the propagation stage of landslides are still needed. This paper addresses this issue by propos-
ing an inverse analysis procedure and applying it to the case history of a short run-out landslide triggered
by a rising perched water table after a heavy rainfall. It focuses on the key role played by the field obser-
vations used to set up the inverse analysis, and evaluating the reliability of the numerical simulations. It
also investigates the effect of different types of optimization parameters on the inverse analysis results,
referring to a mixed-phase model or to a two-phase model for the propagating soil. Several sets of obser-
vations are used; all of them refer to the soil deposit thickness at the end of propagation, but differ in both
location and number of the adopted values. The numerical analysis of the case history is performed
through the academic ‘‘GeoFlow_SPH” model, and model calibration by inverse analysis is conducted
using the ‘‘UCODE” software. The results obtained are discussed with the aim to provide practical criteria
to identify the minimum amount of information required for a satisfactory model calibration.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Back-analyses of boundary-value problems are commonly used
in geotechnical engineering to calibrate relevant soil properties for
modelling purposes. Slope stability was among the first geotechni-
cal problems initially tackled by back-analysis [7,13]. This issue is
becoming more and more important for landslides with potentially
long run-out. In the literature, there are many articles that discuss
the shortcomings of back-analysis in slope stability applications
[30,20,12]. Yet, the increasing use of sophisticated mathematical
models currently prompts the geotechnical community to use
back-analyses of reported case studies to properly identify the cor-
responding model parameters. Although the interpretation of lab-
oratory tests is commonly used to this aim, the specimens being
tested are unlikely to represent real site conditions of the soil
[20,28]. In addition, regular trial-and-error methods might be gru-
eling processes for calibrating and validating complex constitutive
models. In these cases, the use of automatic inverse modelling
algorithms is surely advantageous. Calvello [2] recently coined
the expression ‘‘observational modelling approach” to indicate
any method or procedure that employs inverse analysis techniques

to update, with time, the design predictions of a geotechnical
boundary value problem using available monitoring data.

Inverse modelling has been employed for different slope stabil-
ity and landslide simulations [36,3,33,32]. The majority of the
research conducted on this topic has focused on landslide trigger-
ing employing the hydrualic response of the slope, such as mea-
sures from piezometers, as observations to identify the model
soil properties [37,1]. Landslide propagation behaviour, although
a subject of broad and current interest (e.g., [9,14,15], has rarely
been coupled with inverse analysis algorithms explicitly consider-
ing the geometric characteristics of the slope as observation values,
which may include ground displacements and run-out soil heights
(e.g., [10]). This kind of data is particularly useful for the simulation
of the propagation stage of landslides. Concerning that, for a well-
posed inverse analysis problem, it is very important to choose
proper sets of observations-not always an easy task to perform.

The study presented herein deals with the key role played by
field observations when they are used to set up an inverse analysis.
To this aim, the paper proposes an original procedure to optimize
the calibration of a landslide propagation model when observa-
tions of the deposition heights are available. The procedure is
organised in two sequential steps and it includes both parametric
and optimisation analyses, wherein the results of the first ones
provide relevant information for the second ones. The observation
sets employed in the definition of the inverse problem always refer
to the values of soil deposit thickness, yet they differ for both the
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location and the number of adopted field values. During the first
step of the procedure, when the analyses are conducted using a
simpler rheology to model the propagating soil, many observation
sets are tested with the aim of defining the ones that are most suit-
able to be used for the back-analysis of the landslide. Those sets are
then used, in the second step of the procedure, to calibrate the
model parameters of a more complex two-phase soil model.

The proposed procedure is tested for a landslide case history
that occurred in Hong Kong and for which detailed information
is available [21]. The inverse modelling algorithm used in the study
is ‘‘UCODE” [27,26], which employs a modified Gauss-Newton non-
linear regression to minimise a user-defined weighted least-
squares objective function. Landslide propagation is simulated
using the ‘‘GeoFlow_SPH” model [25,11], which schematises the
propagating mass as a mixture of a solid skeleton saturated with
water, the unknowns being the velocity of the solid skeleton and
the pore water pressure.

2. Methods

2.1. SPH modelling of landslide propagation

In this paper, the propagation simulation is performed through
the ‘‘GeoFlow_SPH” model, which is a depth-integrated hydro-
mechanical coupled model proposed by Pastor et al. [25], based
on the fundamental contributions of Hutchinson [19] and Pastor
et al. [23]. This model incorporates the coupling between pore
pressures and the solid skeleton inside the propagating mass. In
particular, a depth-integrated, coupled, mathematical model has
been derived from the velocity–pressure version of the Biot–Zien-
kiewicz model [23]. The equations are complemented with simple
rheological equations describing soil behaviour and are discretised
using Smooth Particle Hydrodynamics (SPH), which is a meshless
method introduced independently by Lucy [22] and Gingold and
Monaghan [16] for astrophysical modelling applications. Geo-
Flow_SPH was recently used to successfully simulate different case
studies of landslide propagation involving mixtures of coarse-
grained soils saturated with water, also showing bifurcation of
the soil mass [24] or soil entrainment during the inception of deb-
ris avalanches [11]. In most cases, a frictional-type rheology has
been effectively used to schematise these case studies.

For the analyses to be performed herein, two different mathe-
matical models will be used: (i) the mixed-phase model, and (ii)
the two-phase model.

The first schematisation can be profitably used when water and
soil can be effectively approximated as a single-phase material
with averaged physical and rheological properties. Pastor et al.
[23] states that the following two are the limit cases: (i) flow of
granular materials with high permeability, for which the consoli-
dation time is much smaller than propagation time, hence the
material behaves as ‘‘drained”; (ii) flow of slurries with high water
content, for which the dissipation time for pore water pressures is
much higher than the propagation time, hence the behaviour of the
material can be assumed as ‘‘undrained”. In both cases, the mate-
rial behaviour can be approximated as mixed-phase material, for
instance, by using the following frictional law:

sb ¼ �qgh � tan/b � sgnðvÞ ð1Þ

where sb is the basal shear stress, g is the gravity acceleration, h is
the propagating soil depth computed as perpendicular to the
ground surface, /b is the basal friction angle, v is the depth-
averaged flow velocity and sgn is the sign function.

The two-phase model considers pore water pressure changes in
time and space within the propagating mass during the propaga-
tion time, and two unknown variables, the velocity of the soil

skeleton (v) and the pore water pressure (pw). Both variables are
defined as the sum of two components related to propagation
and consolidation along the normal direction to the ground sur-
face. The governing equations are discussed in previous papers
[25,24,6,11]. It is worth recalling that the vertical distribution of
pore water pressure is approximated using a quarter-cosinus shape
function, with a zero value at the surface and zero gradient at the
basal surface [25], while the time evolution of pore water pressure
is then given by Eq. (2). In case of a frictional law, the basal tangen-
tial stress is now given by Eq. (3).

dpb
w

dt
¼ p2

4h2 cvp
b
w ð2Þ

sb ¼ �ðqgh� pb
wÞ � tan/b � sgnð�vÞ ð3Þ

where cv is the consolidation coefficient, sb is the basal shear stress,
g is the gravity acceleration, h is the propagating soil depth, /b is the
basal friction angle, pb

w is the basal pore water pressure, sgn is the
sign function, and v is the depth-averaged flow velocity. The use
of the two-phase model implies that the initial pore water pressures
must be assigned. This can be done by assigning the initial height of
water table relative to soil thickness (hwrel), and the ratio between
the initial basal pore-water pressure and the liquefaction pressure
at base of the flow (pwrel).

The importance of pore pressure dissipation during landslide
propagation has been demonstrated in the literature [25,35,31].
In the model considered herein, it is worth noting that the value
of the consolidation coefficient (cv) affects basal pore water pres-
sure (pb

w); the latter influences the basal shear stress (sb) and, in
turn, both affect flow velocity (v) and flow depth (h). Another
important process, i.e. bed entrainment, will be not included in
the analyses of the selected case history. This choice was because
the landslide propagated over an urbanized area a paved road, both
not erodible for such volume of landslide mass.

2.2. Inverse analysis by non-linear regression

Inverse analysis algorithms work in the same way as trial-and-
error calibration approaches: model input parameters are adjusted
until the model’s computed results match the observed behaviour
of the system. Herein, model calibration by inverse analysis is con-
ducted using UCODE [27], a computer code designed to allow
inverse modelling posed as a parameter estimation problem. In
UCODE, the parameters are optimised by minimising, using a mod-
ified Gauss-Newton non-linear regression algorithm, a weighted
least-squares objective function, S(b):

SðbÞ ¼ ½y� y0ðbÞ�Tw½y� y0ðbÞ� ¼ eTwe ð4Þ

where b is the vector of the parameters being estimated, y is the
vector of the observations being matched by the model, y0 (b) is
the vector of the corresponding computed values, x is a diagonal
weight matrix, e is the vector of residuals.

The regression implies, at any given iteration, multiple runs of
the numerical model to update the chosen input parameters. The
sensitivity matrix employed is, indeed, computed using a perturba-
tion method, either by forward or central differences approxima-
tions. Two convergence criteria are used to close the
optimisation: maximum parameter change lower than a user-
defined percentage of the value of the parameter at the previous
iteration; objective function change lower than a user-defined
amount for three consecutive iterations. Weights are assigned to
the observations, by means of a diagonal weight matrix, for two
purposes: to reduce or increase the influence of some observations
in relation to the other ones; to produce weighted residuals that
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