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a b s t r a c t

This study introduces the vector sum method into discontinuum-based methods by considering the slid-
ing vector and the stress state of the discrete block system. The sliding direction computation and force
projection in the new approach are detailed, and the safety factor is solved by explicit equations. The vec-
tor sum method is implemented in the discontinuous deformation analysis (DDA) program and is used to
compute the safety factors for two numerical examples. A comparison of the solutions obtained with the
theoretical analysis and limit equilibrium analysis demonstrates that the new method is suitable for cal-
culating the safety factor of a slope.

� 2017 Published by Elsevier Ltd.

1. Introduction

There are two common calculation methods in slope stability
analysis: the limit equilibriummethod (LEM) [1] and the finite ele-
ment method (FEM) [2]. Compared to the FEM, the LEM is simple
and has high computational efficiency, which have made it the fun-
damental method for slope stability analysis [3]. However, the LEM
is a static analysis method and ignores the movement of the slope
under the action of external forces. Large displacements, discontin-
uous contacts, a precise friction law and stabilized time-step
dynamic computation are required to reproduce the slope move-
ment until the equilibrium state. Discontinuous deformation anal-
ysis (DDA) is a new efficient numerical analysis method that can
meet the above requirements [4].

Since it was first proposed by Shi [5], the DDA method has been
developed rapidly in many respects, such as contact and 3D analy-
sis [6–14]. DDA can accurately simulate the translation, rotation
and deformation of a block based on time-step calculations. There-
fore, it is able to not only analyze the sliding instability but also
simulate slope failure, such as toppling and collapse. Yeung [15]
verified the form of sliding and toppling failure of blocks.
MacLaughlin et al. [16] simulated both the plane and circular
failure modes of a slope and found that the results have better

accuracy than the analytical solutions or the results of conven-
tional analytical methods. Cheng et al. [17] analyzed the accuracy
of DDA in simulating the four basic motion modes of a rock,
namely, free-falling, rolling, sliding and bouncing. The DDA
method has also been used to analyze the stability of practical
slopes. Hatzor et al. [18] investigated the dynamic deformation of
the upper terrace of King Herod’s Palace in Masada. Jiao et al. [19]
and Xu et al. [20] simulated the entire processes for three practical
landslides, namely, the Qianjiangping, Majiagou and Dongmiaojia
landslides. Wu et al. [21,22] applied DDA to simulate the kinematic
behavior of sliding rock blocks in the Tsaoling and Chiu-fen-erh-
shan landslides, which were induced by the 1999 Chi-Chi earth-
quake. Zhang et al. [23] and Wu et al. [24] presented a run-out
analysis of the Daguangbao landslide subjected to near-fault
multi-direction earthquake forces. Huang et al. [25] used DDA to
model the Donghekou landslide, which was triggered by the
2008 Wenchuan earthquake.

In addition to being used to simulate the failure process of a
slope, DDA can be used to compute the safety factor. There are
three ways to define the safety factor in DDA. The first approach
is the fictitious force method [26], where the safety factor is
defined as the magnification of the fictitious force, which puts
the slope in a state of critical instability. The second approach is
the strength reduction method [27], where the safety factor is
defined as the ratio of the reduced shear strength parameters,
which puts the slope in a state of critical instability. The third
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approach is the contact force method [28], where the safety factor
is defined as the ratio of the resistant and sliding forces, which are
calculated with the contact forces of the sliding surface. In the for-
mer two approaches, the stress states are obtained by multiple cal-
culations under hypothetical conditions, and the safety factor
cannot truly represent the actual state of the slope. The third
approach is actually the LEM, and it considers the dynamic itera-
tive process using DDA. However, in this approach, integrations
of the sliding or resistant forces are the scalar sum of the contact
force components, which cannot reflect the concept of the sliding
vector. To overcome this problem, Ge et al. [29] proposed the vec-
tor sum method (VSM), in which the safety factor is computed
based on the real stress state and the vector sum algorithm, and
thus, the stress field only needs to be calculated once and the
mechanical meaning is clear [30,31].

In this paper, the VSM has been introduced into DDA to deter-
mine the safety factor, and two key steps—sliding direction compu-
tation and force projection—are detailed considering the dynamic
iterations and contact forces.

2. A brief description of DDA

A discrete deformable block is the basic unit of the DDA
method, and the individual blocks are connected and form the
block system based on the boundary conditions. DDA uses time-
step calculations. For each time step, based on the simplex integra-
tion method, the stiffness, inertia, initial stresses, loading, and con-
tact matrices are collected to form the following total equilibrium
equations:
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where [Kij] is a stiffness sub-matrix of order 6 � 6, {Fi} is a load sub-
vector of order 6 � 1, and {DDi} is the incremental displacement
solution of a block in a time step: i, j = 1, 2, . . . , n, where n is the
block number.

The most important task for solving the total equilibrium equa-
tions is accurately calculating the contact forces between the
blocks. In the DDA method, three contact modes are defined: open,
lock and slide. These contact modes are converted in the calcula-
tion process by the addition or subtraction of normal or tangential
springs at each contact position. We call this approach ‘‘open-
close” iterations, which should satisfy two principles: no penetra-
tion or tension in the normal direction and Coulomb’s law in the
tangential direction.

In the two-dimensional DDA method, all contacts between the
blocks are treated in the angle-edge form. As shown in Fig. 1, P1
is a vertex of block i, and P2P3 is an edge of block j. In the current
time step, before solving the total equilibrium equations, the
motion parameters in the previous time step are used to estimate
the movements, and P1 is assumed to move to P0, which may be
located in block j; then, and the penetrations are generated. dN
and dS are the normal and tangential components of the penetra-
tions, respectively, and the normal and tangential components of
the hypothetical contact forces are expressed as

R0
n ¼ KndN

R0
s ¼ KsdS

)
ð2Þ

where R0
n and R0

s are the normal and tangential components of the
hypothetical contact forces, respectively, and Kn and Ks are the nor-
mal and tangential spring stiffness coefficients, respectively.

Then, the total equilibrium equations are solved, and the
motion parameters in the current time step are obtained. The con-
tact modes and penetrations are updated, and the hypothetical
contact forces are modified to obtain the true contact forces. Rn

and Rs are the normal and tangential components of the true con-
tact forces, respectively, and they are confirmed by the following
conditions:

(a) If R0
n is positive (it is assumed that tension is positive and

pressure is negative),

R0
n ¼ KndN P 0 ð3Þ

In this case, the contact mode is open, and no normal or tangential
springs are added. The true contact forces are expressed as

Rn ¼ 0
Rs ¼ 0

�
ð4Þ

(b) If R0
n is negative and R0

s is less than the shear strength,

R0
n ¼ KndN < 0

R0
s < R0

n tanuþ cl

)
ð5Þ

where u and c are the friction angle and cohesion strength, respec-
tively, of the contact surface and l is the contact length.

In this case, the contact mode is lock, and both the normal and
tangential springs are added. The true contact forces are equal to
the hypothetical contact forces, which are expressed as

Rn ¼ R0
n

Rs ¼ R0
s

)
ð6Þ

(c) If R0
n is negative and R0

s is not less than the shear strength,

R0
n ¼ KndN < 0

R0
s P R0

n tanuþ cl

)
ð7Þ

In this case, the contact mode is slide, and only the normal
spring is added. The true contact forces are expressed as

Rn ¼ R0
n

Rs ¼ R0
n tanu

)
ð8Þ

In the original DDA program written by Shi [5], if slide has
occurred, the cohesive force is reduced to zero and the friction
angle remains unchanged in the next time-step calculation, which
reflects the sliding friction of the contact surface. A literature
review shows that the errors are generally lower than 1% if the

Fig. 1. Angle-edge contact in DDA.
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